Carolina Wren + Climate Change vs the Polar Vortex

Like so many species, the Carolina Wren is expanding northward. And, like many of those species, this expansion started decades ago, before any measurable climate change, but has exploded in the past decades with climate change.

This phenomenon is most obvious – and even dramatic – among non-migratory species and short-distance migrants. The same thing is happening in the West (e.g. Anna’s Hummingbird, Turkey Vulture, Red-shouldered Hawk, Great Egret, California Scrub-Jay, Black Phoebe, Townsend’s Warbler, and others).

The Carolina Wren has been expanding north since the 1800s due to habitat recovery after deforestation (Haggerty and Morton, 2020 – the Birds of North America (BNA) species account). What makes the recent Carolina Wren data so interesting is that we can clearly see, in its expansion into Canada, its battle with winter weather conditions.

The raw number of Carolina Wrens reported on Christmas Bird Counts in Canada. Over 95% of these come from southern Ontario. The cold waves marked on the graph were particularly record-breaking and long-lasting.

The species is known for “decimation… by severe winter conditions” (BNA) at the northern limits of its range. The same account notes that “severe winters have apparently been infrequent enough during the 20th century to allow populations to expand and move northward.” Indeed, one of the key conclusions of an analysis of climate change in southern Ontario was that there has been “a decrease in the frequency of cold temperature extremes”.  While the wren is aided against cold snaps by bird feeders, the climate trend, at least in Canada, is in its favor. The report noted an overall average increase of 1.5C.

eBird abundance map. The Carolina Wren has primarily been a species of edge habitat associated with moist southern forests.

As the wren expanded, certain record-breaking and persistent cold waves knocked the population back, where it restarted. It’s also clear that it is restarting from a higher position each time, thus building its numbers and continuing its expansion.

The cold snaps denoted on the graph were particularly severe in southern Ontario. A more detailed look at weather data may reveal a more complicated pattern and even greater correlation to warmer winters.

Predicted range changes for Carolina Wren by National Audubon under 1.5C scenario. This map is fairly accurate as the bird continues to colonize the St. Lawrence River corridor.
eBird map for December 2021 showing colonization from Toronto to Ottawa and Montreal and nearly to Quebec City.
A Carolina Wren fluffed up against the cold. Pic from National Audubon website.

Restoring Southeast Farallon Island thru mouse eradication: Yes

Islands are special

In contrast to continents, their ecosystems have much fewer moving parts. It’s not unusual for an island to have only a few plant species and often no land bird or mammal species. All of New Zealand has no native land mammals except for bats. The Channel Islands off southern California have only a native deer mouse and the island fox, and that’s only on some of the islands. Southeast Farallon Island has no native land mammals.

I’ve had the privilege of being on Southeast Farallon twice. It’s a magical place, home to thousands of seabirds and marine mammals.

Yet islands are critical refuges for marine mammals and seabirds. It’s not unusual for over 90% of a single species to come from a single island, or just a few islands. For example, over 99% of the world’s Heermann’s Gulls breed only on Isla Raza, a 1.5 acre postage stamp in the Sea of Cortez. 95% of the world’s Black-vented Shearwaters breed only on San Benito Island off Baja California. 99% of the world’s Scripps’s Murrelets come from four islands off southern California and Baja California. And probably 50% of the world’s Ashy Storm-Petrels nest in burrows on a single hillside on Southeast Farallon Island. There are similar examples from all over the world.

A new 4-minute video by Point Blue, summarizing the project.

Islands are vulnerable

This gets us to the final characteristic about islands; they are vulnerable to perturbations. Add one more moving part, and things can fall apart quickly. 75% of all bird, mammal, amphibian, and reptile extinctions have occurred on islands. More bird species have gone extinct on the Hawaiian Islands than on North America, South America, Europe, Africa, Asia, and Australasia combined.

The introduction of a single non-native species, such as rats or mice or cats or even rabbits, can result in massive changes to an island’s ecology, leading to the extinction of native or breeding species. Rats, arriving as stowaways on ships, are the number one cause of bird extinctions worldwide.

Scripps’s Murrelet nest success on Anacapa Island, before and after rat eradication.

When I worked for the California Department of Fish and Wildlife, I was involved in over 300 restoration projects. The best one, the one with the most obvious and dramatic benefits, was when we eradicated non-native black rats from Anacapa Island. In addition to benefitting Scripps’s Murrelets, other seabirds such as Cassin’s Auklets began nesting on the island. The native lizard and even the sea stars and mussels and vegetation rebounded; the rats had been eating them all out of house and home.

Here’s the 4-minute version about Anacapa restoration ten years after rat eradication.

The mouse problem on Southeast Farallon Island

Today, the non-native house mouse is impacting the Farallon Islands, one of the most important seabird nesting colonies south of Alaska.

Southeast Farallon Island, the main island, is infested with the mouse. In fact, there are higher densities of house mice there (more than one per square foot) than anywhere in the world. They eat seabird eggs and spread the seeds of non-native weeds around the island. More significantly, they attract a few migrating Burrowing Owls each fall. The owls, lost over the ocean, would normally stop on the island and then leave. But with the mice there, the owls stay and feast. When the winter rains come, the mouse population crashes and the owls begin to starve. Right about then, the declining Ashy Storm-Petrels begin returning to the island to nest. The owls catch them and stack them like cordwood. (In the most recent review, they were not listed an “endangered” based on the assumption that this project would be implemented.)

One thing to know about Ashy Storm-Petrels is that they are long-lived and slow-reproducing, like most seabirds. With the owls killing the adults, the storm-petrel population cannot recover.

Eventually, the owls starve to death. Then the mouse population rebounds in the spring and the cycle starts over, while the storm-petrel population spirals down. This happens every year on the Farallones.

Restoring the island thru mouse eradication

The plan is to eradicate the house mouse from Southeast Farallon Island, as we eradicated rats on Anacapa, and as has been done on over 600 islands worldwide.

Locations of all of the recorded eradications of invasive vertebrates from islands for which location data are available (n=664). 

The key is to get every last mouse—thousands of them. The only way to do this is to use rodenticide bait pellets. It will be done in the late fall, when the mouse population is at its low point, and when there are very few birds or mammals on the island. The few gulls present can be hazed with a laser (we’ve tested this). Any pellets that fall in the water will quickly decompose. On Anacapa, there were few secondary impacts; the benefits were far greater than we ever dreamed.

Scripps’s murrelet on Anacapa.

This project has been researched by dedicated biologists who know and love the island. We have explored all alternatives. (Contraceptives are not feasible. Introducing more raptors is NOT the answer.) We have researched possible harms and benefits. We’ve seen the amazing restoration of the ecosystem on Anacapa and on 600 islands worldwide, and we’ve worked with experts from New Zealand.

Supporters

Here is a list of organizations and experts in support of the project:

  • National Audubon Society
  • Audubon California
  • American Bird Conservancy
  • BirdLife International
  • The Nature Conservancy
  • California Native Plant Society
  • California Invasive Plant Council
  • David Ainley; author of Seabirds of the Farallon Islands; Ashy Storm-Petrel species account in Birds of North America
  • Peter Pyle; Institute for Bird Populations; author of Identification Guide to North American Birds and over 100 journal articles
  • Peter Harrison; author of Seabirds: An Identification Guide.
  • Mark Rauzon, Marine Endeavors; author of Isles of Amnesia: The History, Geography, and Restoration of America’s Forgotten Pacific Islands.
  • Hadoram Shirihai, Tubenoses Project; author of A complete guide to Antarctic wildlife: the birds and marine mammals of the Antarctic continent and the Southern Ocean; Whales, dolphins and seals: A field guide to the marine mammals of the world; The Macmillan birder’s guide to European and Middle Eastern birds.
  • Debi Shearwater, Shearwater Journeys, 44 years of offshore experience; co-author of Distribution patterns and population size of the Ashy Storm-Petrel
  • Dianne Feinstein, US Senator
  • Point Blue Conservation Science (formerly Point Reyes Bird Observatory)
  • Institute for Bird Populations
  • Pacific Seabird Group
  • Agreement on the Conservation of Albatrosses and Petrels
  • Island Conservation 
  • Oikonos
  • California Academy of Sciences
  • California Institute of Environmental Studies
  • Oiled Wildlife Care Network
  • International Bird Rescue
  • Golden Gate Audubon Society
  • Marin Audubon Society
  • Monterey Audubon Society
  • San Diego Audubon Society
  • Sequoia Audubon Society
  • Marin County Supervisor
  • Santa Cruz County Supervisor
  • National Refuge Association
  • Save the Bay
  • Farallon Islands Foundation
  • Citizens Committee to Complete the Refuge
  • Coastal Conservation Action Lab
  • Freshwater Life
  • Marin Conservation League
  • Marine Endeavors
  • Natural Heritage Institute
  • South Georgia Heritage Trust

More details about the project and the public process

More details about the project, the process, and all relevant documents can be found here. The project will come before the California Coastal Commission on Dec 16, 2021. Letters to the Commission should be emailed to farallonislands@coastal.ca.gov. The deadline for letters is 5pm on Friday, December 10.

Related reports and videos

Here are some videos and reports about past similar projects:

Paper: The Global Islands Invasive Vertebrate Eradication Database: A tool to improve and facilitate restoration of island ecosystems

Article: 169 Islands that Offer Hope for Stemming the Extinction Crisis: Nearly 10% of island extinctions can be prevented through the eradication of invasive mammals on 169 islands

Anacapa Island Rat Eradication

Achieving Balance: Anacapa Island Ten Years After the Removal of the Black Rat (15 min)

Final Report: Responses by Breeding Xantus’s Murrelets Eight Years after Eradication of Black Rats from Anacapa Island, California  

All the reports on the Anacapa rat eradication

Short documentaries/reports of rodent eradications from islands around the world

Night Birds Returning: eradication of rats by Haida Nation and Parks Canada

The Rakiura Titi Islands Restoration Project: Community action to eradicate rats for ecological restoration and cultural wellbeing

Million Dollar Mouse: the eradication of mice from Antipodes Island

Macquarie Island Pest Eradication Project – documentary trailer

Rat Eradication – South Georgia Island

Eaten alive: Tristan Albatross chick massacred by invasive mice on Gough Island [WARNING: GRAPHIC]

Operation: Desecheo National Wildlife Refuge, Puerto Rico       

Southeast Farallon looking down from the summit. The steep hillside below hosts half the world’s population of Ashy Storm-Petrels.

Mapping the expansion of the California Scrub-Jay into the Pacific Northwest

This blog post is merely to provide a visual illustration, by way of a map, of the expansion of the California Scrub-Jay across Washington, British Columbia, eastern Oregon, Idaho, and even Montana (one record so far). It is intended to complement my more detailed article, “Tracking Expansion of the California Scrub-Jay Into the Pacific Northwest”, in the Washington Ornithological Society (WOS) News, August-September 2021 edition.

California Scrub-Jays are often first detected at bird feeders in suburban areas. As aggressive nest predators, jays should not be subsidized by anthropogenic food sources. In short, please don’t feed the corvids. Port Townsend, WA. April 2021.

As becomes clear in the article, these are not hard lines. The jays are advancing gradually, not in a solid wave. Typically, a single jay will appear well outside the known range (e.g. Spokane). Within a year or two, there will be several. Then they’ll be breeding. Then they will begin expanding further. Meanwhile, a wave of jays will be backfilling the new territory, with densities increasing annually. The lines in this map are as much art as science, but are intended to show the primary region were jays were “regular and expected”. There were always outliers, pioneer dispersers expanding the range. Records beyond the 2020 line are shown as pale blue dots.

CLICK MAP TO ENLARGE

The expansion of the California Scrub-Jay mimics that of several other species, mostly non-migratory or short-distance migrants, rapidly expanding from California and Oregon into the Pacific Northwest.

The jay’s expansion has already surpassed that predicted by the Audubon Society’s climate model under a 3.0 degree Celsius scenario, shown here.

The jay’s expansion, when considered in the context of timing and trends in other species, is likely a function of a warming climate combined with suitable food sources. For more discussion of this, see the WOS article linked above.

They seem to be particularly taking advantage of warmer winters in the lower Columbia River Basin.

It will be interesting to see where the 2030 scrub-jay “contour line” will be. I predict they’ll be on Vancouver Island from Victoria to Campbell River, as well as up the Sunshine Coast, up the Okanagan Valley to Kelowna and possibly Kamloops, and east to Idaho, from Coeur d’Alene in the north throughout the Snake River Valley in the south.

After that, they face some formidable hurdles. The biggest obstacles to their expansion further north and east will be habitat with limited food sources (e.g. high mountains). That said, they’ve already shown some ability to travel up mountain valleys and potentially cross the Cascades north of Mount Rainier.

Like most corvids, California Scrub-Jays are big time cachers, storing extra food for future use. I took this photo in southern California, October 2017, when a family of jays were repeatedly stripping an oak, two acorns at a time, flying over a nearby ridge to cache them, and then returning again and again throughout the morning.

The causes of California’s megafires: Climate change or 150 years of Euro-American mismanagement? Yes and yes.

In a very frank and data-rich webinar, fire ecologist Hugh Safford (USDA Forest Service and research faculty at Department of Environmental Science and Policy at UC Davis) offers “Some ruminations on fire and vegetation trends in California”. He explains the causes of the dramatic increase in megafires and what can be done about it.

A 2,500 year-old tree at Sequoia National Park now needs protection from fires.

The webinar was co-sponsored by the Yolo Interfaith Alliance for Climate Justice and Cool Davis and presented on May 5, 2021.

Safford’s presentation starts at 13:23 of the video. The equally enlightening Q&A session begins at 48:20.

Here is a summary of some of the key points:

  • The annual burned area has been rising rapidly since the 1980s, almost entirely in northern California.
  • This is largely due to fire exclusion caused by the removal of Native Americans as land managers and increased drought and record vegetation dryness caused by climate change.
  • Since 1999, burning over a million acres/yr now occurs regularly; this had not happened before 1999.
  • Pre-EAS (Euro-American Settlement) burning by Native Americans totaled up to FOUR million acres/year (but these were low severity fires that primarily burned the understory and smaller trees).
  • “Euro-Americans, when they showed up in the 1850s, and for that matter today, had no idea how important fire was to the functioning of these ecosystems and they feared it and felt like it was something they needed to stop. After a hundred years of that, it’s really biting us in the butt now because now we have jungles of fuels, we’ve cut most of the big fire-resilient trees out of the system, and when we get the ignitions start we can’t stop the fires anymore. Until about the 1990s, it was easy to put fires out in the forests.”
More mature trees are burning; the acres burned by high severity fires (where more than 90% of trees die) have increased 7x since 2001 in northern Sierra Nevada. 35% of the area of current fires are severe (burn most of the trees); under regular Native burning, this was 5-15%.
  • Pre-EAS forests were at least 40% old growth; current forests are only 6% old growth and highly vulnerable to high severity fires, as they are 4-5x denser than pre-EAS.
  • “Every single fire projection we found in the literature predicts bigger fires, more fires, and more severe fires, basically until we’ve burned so much of California that there actually isn’t much woody vegetation left to burn.”
  • Expect the loss of conifers and an increase in non-native grassland.
  • Changes already underway: loss of blue oak woodland, ponderosa, yellow pine, and subalpine pine; increase in hardwoods. Loss of sage scrub and chaparral in southern California. Many burned areas are quickly invaded by non-native grasses and will not recover. Incense cedar and white fir may become more dominant trees in California forests.
  • Fires in the Coast Range are now destroying chamise and blue oaks with limited evidence of re-sprouting.
  • In the short run, there’s not a lot we can do to manage climate, but there’s a lot we can do to manage fuels.
  • There’s been a huge renaissance, especially among Native tribes, to use controlled burns to manage forests. California’s new fire resilience plan supports the use of controlled burns. Northern Australia has had great success allowing Aboriginies to manage forests. Opportunities are limited, however, because of development.
  • The combination of drought cause megafires in the Sierra to produce “Hiroshima-type landscapes”, burning old growth.
  • How to stop fires: Forest thinning is critical, but it’s not economical to harvest small trees, so the government will have to subsidize it. For example, we can use the cut trees for biomass energy, as it done in Scandinavia. This is the only way to save large old growth trees and healthy forests.  “We have to cut a lot of trees. We don’t have a choice…. We can create forests that can handle large fires, or we can sit around and watch it all vaporize.”

Honorific bird names facts and figures

Here is a closer look at the eponymous (mostly honorific) names for the most familiar species in North America.

At the American Ornithological Society (AOS) Congress on English Bird Names on April 16, 2021, a host of prominent organizations and individuals endorsed “bird names for birds”, a widespread effort to rename eponymous or honorific species names with more descriptive names, focusing on their physical or ecological attributes.

This Analysis: 80 familiar species

Scott’s Oriole was named after two brothers and then, later, the Commanding General of the US Army.

Looking at Version 8.0.8 (March 12, 2021) of the ABA Checklist, 116 of the 1,123 species, or a little over 10%, are named after people. Of the 116 in the ABA area, two (Bishop’s Oo and Bachman’s Warbler) are considered extinct, one is an introduced species in Hawaii (Erckel’s Francolin), and 32 others are Codes 3, 4 or 5, meaning they occur rarely in the ABA area. The remaining 80 are all Code 1 or 2 and can be expected to be seen in the ABA area regularly. The following analyses focuses on these 80 familiar species.

The Birds

The first thing to note is that these 80 species come from a wide array of families and species groupings. As with all birds, Passerines are dominant, making up 49% of the list. Digging deeper, seabirds and Passerines with limited ranges (mostly warblers and sparrows) are over-represented—because they were described relatively late in the European discovery process, when honorific naming became more in vogue.

Naming Patterns

The AOU (American Ornithological Union, the precursor to the AOS) began proposing English names in its first checklist in 1886, but didn’t complete the effort – and the names were not universally accepted – until the 5th edition in 1957. Meanwhile, the Latin scientific names have always followed a clear rule: the Latin name is set by the first published description of a species. The “bird names for birds” movement is focused on English names only.

Eponymous naming was rare in the 18th century, limited to just four of the 80 species, all emanating from Russian/German and British field work, primarily focused on the far north. The four early birds are Steller’s Eider (1769), Blackburnian Warbler (1776), Steller’s Jay (1788), and Barrow’s Goldeneye (1789).

Then, in 1811, Alexander Wilson named a woodpecker and a nutcracker after Lewis and Clark, and honorific naming was off and running, peaking in the mid-1800s.

Eponyms for the 80 Code 1 and Code 2 species are overwhelmingly honorific. Only six are named after the describer himself (Wilson’s Warbler, Sabine’s Gull, Brandt’s Cormorant, Townsend’s Warbler, Gambel’s Quail, and Cory’s Shearwater), and it’s not clear that even all of them intended for the species to have an eponym; the Latin names for the warbler, cormorant, and shearwater suggest otherwise. Wilson himself called his warbler the Green Black-capped Flycatcher and the western subspecies went by Pileolated Warbler (coined by Pallas) as late as the 1950s.

The namers were widespread – 36 different people provided the 80 names, though four stand out. John James Audubon provided fifteen of the eponymous names, Spencer Baird and John Cassin each provided seven, and Rene Lesson four. Together, these four ornithologists were responsible for 41% (33/80) of the honorific names in this analysis. In addition, many eponymous subspecies were coined by Baird.

CLICK TO ENLARGE

Locations on the diagram only loosely correspond to the time axis due to space constraints.

The majority of the namers were connected to each other, with many naming birds after colleagues, who in turn named species after other colleagues. Lesson described Audubon’s Shearwater and Oriole; Audubon described Baird’s Sparrow; Baird described Woodhouse’s Scrub-Jay; Woodhouse described Cassin’s Sparrow; Cassin described Lawrence’s Goldfinch; Lawrence described LeConte’s Thrasher.

There are no examples of a quid pro quo, where two people named birds after each other, unless you count Audubon’s Warbler, described by Townsend in 1837; Audubon returned the favor with Townsend’s Solitaire the following year. Or Coues, who christened a sandpiper after Baird in 1861; four years later, Baird named a warbler after Coues’ sister, Grace.

Despite Audubon’s dominant role in honorific naming, no Americans honored him (excepting Townsend with Audubon’s Warbler); only Lesson, a Frenchman, did.

A third of the species (27 of 80) have Latin names that do not match the honorific English name. In most instances this is because the bird was accidentally described twice. Most often, they were not originally intended to have an honorific name. A person described the species and gave a descriptive Latin name, then later another person described the same species and gave an honorific name. For example, Lichtenstein described A. aestivalis in 1823, then Audubon described it again in 1839, naming it Bachman’s Sparrow. When it was realized the two were the same species, the Latin name provided by the first publication held, but, at least in these instances, the honorific English name was also given—a kind of consolation prize to the second describer. Thus, what was called Pinewoods or Oakwoods Sparrow became Bachman’s Sparrow. It’s apparent that oversight and review of “naming and claiming” was limited.

Among the 80 species in this analysis, this double-describing happened at least 18 times. Curiously, six of these were by Audubon and account for 40% of his honorific bestowments. These are Harris’s Hawk, Bachman’s Sparrow, MacGillivray’s Warbler, Harris’s Sparrow, Brewer’s Blackbird, and Smith’s Longspur. MacGillivray’s Warbler was intended to be Tolmie’s Warbler as described by Townsend; the other five have descriptive Latin names. There is one other double-described species that has a Latin honorific—Scott’s Oriole, Icterus parisorum, originally named after the Paris brothers. Most of the others have descriptive Latin names.

Cassin’s Auklet (P. aleutica) and Cassin’s Kingbird (T. vociferans) were first described, respectively, before Cassin was born and when Cassin was just thirteen. Clearly the original describers did not intend to honor Cassin. However, by the 1886 AOU checklist both carried the Cassin moniker, though there is no record that I could find how or why that came to be (and even a co-author of the auklet’s Birds of North American species account didn’t know the answer).

Interestingly, two species have Latin names derived from indigenous words: pipixcan of Franklin’s Gull is Nahuatl for the gull or possibly the Aztec region in Mexico; sasin of Allen’s Hummingbird is Noo-chah-nulth (Nootka) for hummingbird, a reference to when the species was lumped with Rufous Hummingbird. The gull was described twice, which is how it ended up honoring Franklin. The hummingbird was split, providing an opportunity for another name. Ironically, Allen’s, not Rufous, Hummingbird always bore the Noo-chah-nulth name which emanates from Vancouver Island.

Correlated with the timing, a clear regional pattern emerges. Because the common eastern species had already been described a century earlier, western species with honorific names outnumber eastern ones nearly ten to one. A map plotting the year of description with the core of the species’ range mimics European expansion – and ethnic cleansing of Native Americans – across the continent in the nineteenth century.

The Honorees

As for the honorees, most were naturalists, either doing field work or promoting it (70 of 80), most were Americans (55 of 80) or at least had spent some time in North America (add ten more). French collectors dominated the hummingbirds.

Only six species honor women—or girls. Blackburne is the early outlier, a British naturalist honored by one of the German ornithologists in the late 1700s. Neither spent time in North America; the type specimen comes from South America. Curiously, the eponymic title is not in the possessive form (e.g. Blackburne’s Warbler). For reasons unknown to me, the Latin name was changed from blackburniae to fusca before 1910.

During the surge of honorifics in the mid-1800s, the only females honored were friends or family, and they only got first names. Anna, age 27 when the hummingbird was named in her honor, was the wife of an ornithologist and a lady-in-waiting in the court of Emperor Napoleon III’s wife. She was described by Audubon as a “beautiful young woman, not more than twenty, extremely graceful and polite.” Virginia was the wife of William Anderson, the original collector; she was honored by Baird at Anderson’s request. Grace, also honored by Baird, was Elliot Coues’s sister. Lucy, age 13, honored by James G. Cooper, was Baird’s daughter.

We don’t return to female scientists – and last names – until the 1900s, with Scripps, who was honored in 1939, and her bird didn’t reach species status until 2012.

Most of the honorees have no obvious indications of a checkered past (66 of 80), though most of these were quite comfortable associating with, or honoring with bird names, those who were slaveholders, white supremacists, or actively involved in killing or removing Native Americans, even while these actions were hotly debated and contested at the time among whites—and universally opposed by Blacks and Native Americans. As early as 1920, the entire concept of eponymous bird names was challenged.

CLICK TO ENLARGE

Locations are intended to approximate the location of the species’ range or location of type specimen.

The dominance of western species among honorific names with morally objectionable pasts is no accident. In wars of conquest against Mexico and Indigenous peoples, the US army sought solider-scientists who could help map new lands. In the process, they renamed land and wildlife as if it was discovered for the first time. Many of the ornithologists working in the West were attached to US military expeditions or other surveys of colonization, such as railroad surveys or the border survey after the Mexican-American War. They often served as doctors while doing naturalist work on the side. Many were likely looking for a vehicle to get into the field.

Others were active combatants, with the naturalist work coming on the side. William Clark, after the famous 1803 expedition, played a leadership role in the ethnic cleansing of Native Americans for three decades. Abert served as a soldier under John Fremont’s Third Expedition and likely participated in the Sacramento River massacre of Wintu families, deemed horrific by their contemporaries. General Winfield Scott, not a naturalist in any way, was honored by Couch with an oriole precisely for his role as the Commanding General of the US Army, which included overseeing the arrest, detainment, and expulsion of the Cherokee during the Trail of Tears. Scott had been a major party candidate for president of the United States just two years before Couch honored him with the oriole. Imagine McCain’s Oriole or Romney’s Finch.

This passage, from a 1960 article about soldier-scientists Richard and Edward Kern (who collected birds but only got a river, a beetle, and a county named after them), exemplifies the era. “Their first task… was to map uncharted Navajo country on a punitive march with the army.* It was a rich opportunity to observe Indians in their native haunts. How many men did they know at the academy in Philadelphia who would give an arm to be thus contacting Pueblos and Navajos! Moreover, the Kerns would measure a few more skulls for Morton; snare some strange lizards for Leidy; and capture for their own delight any number of bright birds from a terra incognita.”

[* This was Col. John M. Washington’s 1849 incursion in which elderly Navajo Chief Narbona was killed minutes after a peace agreement, leading to war between the Navajo and US, who had just annexed much of the Southwest from Mexico]

But why did they turn to honorific naming when their predecessors did not? Was it the spirit of conquest, of erasing the former occupants of the land, that gave them the presumption and bravado to name even the birds after each other? After all, mountains, rivers, valleys, and large regions of land were all being re-named and claimed as European. In the Southwest, many places that already had Spanish names were given English names.

White supremacy permeated the sciences. Crania Americana was published between 1839 and 1849 by Samuel Morton, a colleague of several of the naturalists. In addition to the Kern brothers mentioned above, Townsend collected skulls for him. During the same era, to support the Indian Removal Act and other similar policies, the Mound Builder Myth, asserting that Native Americans were not actually native, but that North America was originally populated by Europeans, was widely taught in grade schools across the land. The land was originally European, so the story went. This theory was eventually laid to rest thanks to the efforts of John Wesley Powell, but only after most Natives were detained in concentration camps.

In short, the scientific fields were permeated with white supremacy and a sense of white ownership. Ornithological research found itself interlocked with US military endeavors and, on the Western frontier, far from Eastern progressive voices advocating abolition and respect for slaves and Natives. In this climate, honorific naming eventually ran amok, often foundering on the rocky shores of slavery and ethnic cleansing, aka manifest destiny.

It would be wrong to assume that “everyone was doing it.” In 1822, Thomas Say, honored by Charles Bonaparte with the phoebe, described Long-billed Dowitcher, Band-tailed Pigeon, Dusky Grouse, Western Kingbird, Rock Wren, Lark Sparrow, Lesser Goldfinch, Lazuli Bunting, and Orange-crowned Warbler, giving all of them descriptive names.

Caveat: Researching the origins of species’ names is challenging, especially for those described more than once or subject to taxonomic revisions. Corrections from knowledgeable readers are much appreciated. Regardless of errors, the larger picture, the trends regarding time and place, still hold.

Note: Updated June 2, 2021 to include Blackburnian Warbler.

I recently dug deeper and looked at what these species are called in other languages. It turns out that all of these species have alternative “bird names” in other languages.

I’ve added some thoughts addressing the question: Should we hold people in the past accountable to present-day mores?

As a citizen of Cherokee Nation, here is my personal connection to Scott’s Oriole.

Bird names matter: Top ornithologists and organizations endorse name changes for all species named after people

At the American Ornithological Society (AOS) Congress on English Bird Names on April 16, 2021, a host of prominent organizations and individuals endorsed “bird names for birds”, a widespread effort to rename eponymous or honorific species names with more descriptive names, focusing on their physical or ecological attributes. For example, Wilson’s Warbler could become Black-capped Warbler, Townsend’s Solitaire might become Northern or Juniper Solitaire, and Kittlitz’s Murrelet would probably be re-named Glacier Murrelet.

MacGillivray’s Warbler was named by John James Audubon after his friend, William MacGillivray, a Scottish ornithologist who never came to America. Audubon also coined its Latin specific, tolmiei, to honor William Fraser Tolmie, a Scottish employee of Hudson’s Bay Company based at Fort Nisqually during the period of Native removal. Scientific, or Latin names, are subject to international rules and are not the focus of this process.

While specific new names have not yet been chosen, representatives of the American Birding Association (ABA), National Audubon Society, as well as David Sibley and Kenn Kaufmann, all heartily endorsed developing a process to make the changes, noting that new names would engage a larger audience, contribute to greater equity and inclusivity among birders and the interested public, and could aid in public communication and conservation efforts.

The effort has grown out of the national reckoning on racial equality in the aftermath of the George Floyd killing. Movements to change names are underway with regard to parks, mountains, streets, other wildlife, and even rock-climbing routes. Current names generally go back to the eighteenth and nineteenth centuries during European expansion across North America and recall an era of conquest, when species and landforms were “discovered” – and some named after the individual who documented them, or after their friends and colleagues.

An FAQ, full list of the panelists, and a video of the Congress can be found at the AOS English Bird Names website. The direct link to the video is here.

Sibley commented that, the more he learns about the names, “the more they cast a shadow over the bird” and “the name doesn’t mean just the bird anymore. They have baggage.” Out of respect for people and the birds, they “should not have to carry a reminder of our own fraught history.” Choosing between stability and respect, Sibley stated “I choose respect.”

Name changes over social justice concerns began last year when McCown’s Longpsur was changed to Thick-billed Longspur, after widespread outcry because McCown was a Confederate general and involved in the ethnic cleansing of Native Americans. A proposal in 2018 for that name change was roundly rejected. 

Name changes for these reasons are not new; most birders can probably recall the switch from Oldsquaw to Long-tailed Duck in 2000. At that time, the American Ornithologists’ Union, the precursor to the AOS, asserted that the name change was not for reasons of “political correctness” but merely to conform with usage elsewhere.

The Bird Names for Birds website includes bios of various people memorialized with bird names. For example, Townsend (of the solitaire, warbler, and storm-pretrel) collected Native skulls for his friend Samuel Morton, author of Crania Americana. The November 2020 issue of Birding magazine focused on name changes, with a strong endorsement by ABA President Jeffrey Gordon and a longer article providing historical background. It is available here for ABA members.

Bird Names for Birds, a group of interested birders, was instrumental in reaching out to the larger organizations to participate in the congress. In their words, “Eponyms (a person after whom a discovery, invention, place, etc., is named or thought to be named) and honorific common bird names (a name given to something in honor of a person) are problematic because they perpetuate colonialism and the racism associated with it. The names that these birds currently have—for example, Bachman’s Sparrow—represent and remember people (mainly white men) who often have objectively horrible pasts and do not uphold the morals and standards the bird community should memorialize.” They describe such names as “verbal statues” that should be removed.

Jordan Rutter of Bird Names for Birds argued that, when reaching out to the public to protect an endangered sparrow, Bachman’s Sparrow has much less appeal than an alternative name rooted in local ecology that the public could identify with. Kaufmann pointed out that Bachmann was a pro-slavery white supremacist and that the species was formerly known as the Pinewoods Sparrow.

In the AOS’s own language, “The Community Congress opens the discussion on the complex issues around eponymous English Bird Names…. The specific aim of the Community Congress is to provide an opportunity for a broad range of stakeholders from the birding and ornithological community to share their viewpoints, including challenges and opportunities from their perspectives, to best inform future next steps to address the issue of naming birds after people.”

The AOS Congress on English Bird Names was superbly moderated by José González, providing a model for the process ahead.

Keepers of various ornithological databases also participated in the Congress, including representatives for eBird, Christmas Bird Counts, Breeding Bird Surveys, and the Bird Banding Laboratory. While noting potential complications with name changes (and changes in four-letter banding codes), they all agreed the hurdles were not insurmountable. Indeed, name changes, as well as taxonomic lumps and splits, occur every year, with name changes being the simplest of the three to address in data management. eBird currently supports bird names in 47 languages, including 14 different versions of English. Where Americans see Black-bellied Plover, Brits see Grey Plover.

Marshall Iliff of eBird pointed out that the effort is also an opportunity to clean up old taxonomic messes, pointing out that Audubon’s Shearwater has been used for eleven different combinations of nine different taxa. In this case, he said, fresh names for specific taxa will provide clarity, not confusion. He embraced a worldwide effort to “dig into the essence of each species” to “find inspired and appropriate names.”

For now, the effort will be limited to primary eponymous English bird names. The effort will not include secondary names (e.g., American Crow, named after the continent, which was named after Amerigo Vespucci). Other problematic names, such as Flesh-footed Shearwater for a bird with pink feet, were not discussed.

Many suggested using Native names for species, though most stated this could be challenging because 1) names from Native languages may have been lost, or 2) most bird species’ ranges span multiple historic aboriginal territories and languages, creating a conundrum over which indigenous word to use. The exception to this is Hawaii, where indigenous names are already in widespread use. Among mammals, moose, raccoon, and skunk are all derived from Algonquian.

Does Lawrence’s Goldfinch deserve a better name?

Looking at Version 8.0.8 (March 12, 2021) of the ABA Checklist, 115 of the 1,123 species, or a little over 10%, are named after people. Of these, 2 (Bishop’s Oo and Bachman’s Warbler) are considered extinct, and 20 others are Code 4 or 5, meaning they occur extremely rarely in the ABA area (though three of these are regular in Mexico, within the AOS area). The remaining 93 are all Code 1, 2, or 3, and can be expected to be seen in the ABA area regularly.

Here are the 113 non-extinct species from the ABA Checklist.

Ross’s Goose

Steller’s Eider

Stejneger’s Scoter

Barrow’s Goldeneye

Gambel’s Quail

Erckel’s Francolin

Clark’s Grebe

Vaux’s Swift

Rivoli’s Hummingbird

Anna’s Hummingbird

Costa’s Hummingbird

Allen’s Hummingbird

Xantus’s Hummingbird

Ridgway’s Rail

Wilson’s Plover

Temminck’s Stint

Baird’s Sandpiper

Wilson’s Snipe

Wilson’s Phalarope

Kittlitz’s Murrelet

Scripps’s Murrelet

Craveri’s Murrelet

Cassin’s Auklet

Sabine’s Gull

Bonaparte’s Gull

Ross’s Gull

Franklin’s Gull

Pallas’s Gull

Belcher’s Gull

Heermann’s Gull

Forster’s Tern

Salvin’s Albatross

Wilson’s Storm-Petrel

Swinhoe’s Storm-Petrel

Leach’s Storm-Petrel

Townsend’s Storm-Petrel

Tristram’s Storm-Petrel

Murphy’s Petrel

Fea’s Petrel

Zino’s Petrel

Cook’s Petrel

Stejneger’s Petrel

Bulwer’s Petrel

Jouanin’s Petrel

Parkinson’s Petrel

Cory’s Shearwater

Buller’s Shearwater

Newell’s Shearwater

Bryan’s Shearwater

Audubon’s Shearwater

Brandt’s Cormorant

Cooper’s Hawk

Steller’s Sea-Eagle

Harris’s Hawk

Swainson’s Hawk

Lewis’s Woodpecker

Williamson’s Sapsucker

Nuttall’s Woodpecker

Nutting’s Flycatcher

La Sagra’s Flycatcher

Couch’s Kingbird

Cassin’s Kingbird

Hammond’s Flycatcher

Say’s Phoebe

Bell’s Vireo

Hutton’s Vireo

Cassin’s Vireo

Steller’s Jay

Woodhouse’s Scrub-Jay

Clark’s Nutcracker

Bewick’s Wren

Pallas’s Leaf Warbler

Blyth’s Reed Warbler

Pallas’s Grasshopper-Warbler

Middendorff’s Grasshopper-Warbler

Townsend’s Solitaire

Bicknell’s Thrush

Swainson’s Thrush

Bendire’s Thrasher

LeConte’s Thrasher

Sprague’s Pipit

Pallas’s Rosefinch

Cassin’s Finch

Lawrence’s Goldfinch

Smith’s Longspur

McKay’s Bunting

Pallas’s Bunting

Botteri’s Sparrow

Cassin’s Sparrow

Bachman’s Sparrow

Brewer’s Sparrow

Worthen’s Sparrow

Harris’s Sparrow

Bell’s Sparrow

LeConte’s Sparrow

Nelson’s Sparrow

Baird’s Sparrow

Henslow’s Sparrow

Lincoln’s Sparrow

Abert’s Towhee

Bullock’s Oriole

Audubon’s Oriole

Scott’s Oriole

Brewer’s Blackbird

Swainson’s Warbler

Lucy’s Warbler

Virginia’s Warbler

MacGillivray’s Warbler

Kirtland’s Warbler

Grace’s Warbler

Townsend’s Warbler

Wilson’s Warbler

Morelet’s Seedeater

There are also several hybrids (e.g. Brewster’s and Lawrence’s Warblers), prominent subspecies (e.g. Thayer’s Gull and Audubon’s Warbler), and superspecies (e.g. Traill’s Flycatcher) that are used in some databases. It is not clear if these will be addressed at this time.

Goodbye California: Reminiscences of a climate refugee

There are a lot of reasons why I’m moving from California to Washington, including family and other personal considerations. But one reason, one big reason, is California’s rapidly changing climate.

It was late February in the Coast Range of northern California when I was wearing shorts and a t-shirt. Dust swirled around my car in the dirt parking lot at Cold Canyon. The car thermometer, warmed by a sun that felt imported from Palm Springs, said 87 degrees; it was actually only 77. A hint of ash, omnipresent since The Fire last summer, remained in the air.

Its oaks torched with little hope of return, Putah Creek Canyon is quickly resembling a sun-scorched canyon in Arizona. Until 2018, only one fire in the area had burned more than 15 square miles. Then the County Fire burned 140 square miles. In 2020, the LNU Complex Fire burned 570 square miles.

The hillsides were green with the new growth of non-native grass, which was responding to a recent heavy rain. That was deceptive. More than half the rain we’d had in the previous eight months came in that single event. We had six inches of rain in all of 2020. Looking beyond the grass, nearly every tree – blue oaks and gray pines – on the hillsides was dead, burnt black and orange monuments to a previous era. For our local blue oak woodland, that era ended last year and, given that recruitment of saplings is unlikely due to heat, fire, and cattle, it was an era that will never return.

Massive die-offs are eliminating blue oaks from the southern third of their range. Black oaks are marching up the Sierra, displacing Ponderosa pine, which are marching up, displacing firs. Everyone is on the move. Oak woodlands are becoming oak savannahs, oak savannahs are becoming grasslands, grasslands are becoming rocky high deserts. Arizonification is happening quickly, thru heat, drought, and ultimately, thru fire.

Virtually all of the east slopes of the Coast Range between San Francisco Bay and the Trinity Alps has burned in the past ten years. In the Sierra, one can practically predict where the next fire catastrophe will happen, because it hasn’t burned yet (hint: Lake Almanor, Placerville, Arnold).

The Fire, the LNU Complex Fire, was part of 2020’s 4.3 million acres of scorched earth. The LNU Fire exceeded the total acreage of all previous fires that impacted my county over the last 50 years combined.

It was a beautiful day—for April. But February has become April, April has become May, and June, July, August, September, and even October and November have become unrecognizable. Every year more heat records are broken. Hottest summer, hottest month, most days over 100, most days over 90. The list goes on, each year breaking the records set the previous year. Weather data is normally highly variable; now it is a straight line—warmer and warmer. And smokier.

My cape honeysuckle and bougainvillea, both planted with a degree of optimism outside their recommended zone, used to die back so badly in the winter that each spring I was tempted to declare them dead and pull them out. Now they bloom year-round, looking like they’re in a courtyard at a hotel in the tropics. We haven’t had a real freeze in seven winters.

The songs of lesser goldfinches on my street are a depressing warning. I can’t take two steps outside without seeing or hearing a bird that reminds me that our climate has seriously changed. Western tanagers, house wrens, and turkey vultures are regular in winter now. The lesser goldfinches have come out of the arid hills and are quickly becoming one of the most ubiquitous nesting birds in Davis. (I know this definitively because one included an imitation of a canyon wren in its song.) What’s more, at least four Say’s phoebes, essentially a high desert species, are scouting for nests in town now. A fifth arrived on my block last week, singing as if on territory. They’ve been doing this for a few years and their numbers are growing.

The graphs of acres burned in California (and in other western states) and the expansion of some bird species into the Pacific Northwest (in this case, Anna’s hummingbirds in winter), are strikingly similar.

I’m leaving. I’ve lived in California fifty-five years but it’s no longer the state I grew up in.

We’re headed to the Olympic Peninsula in Washington. We are fortunate to be able to do so.

Besides the cooler summers, one of the best things about moving to a new place is that I won’t be reminded of climate change on a daily experiential basis. Because the ecosystem will be new to me, I won’t know what’s different, what is changing, except maybe for the brown boobies, a tropical seabird, that are now showing up in Puget Sound each year. Or the family of California scrub-jays that have just established residence on my new street. Like Anna’s hummingbirds, black phoebes, great egrets, red-shouldered hawks, and people like me, scrub-jays are moving north. I expect more of California’s birds to follow me, just as I follow some of them. Yes, lesser goldfinches are coming north too; they’re already established southeast of Tacoma.

I feel like a frog in a boiling pot. I’m getting out. I’m saying goodbye to California, but I feel it has left all of us without saying goodbye to anyone.

The view from Point Wilson, a mile from my new home in Port Townsend, which has had only a few nights below freezing all winter. Climate change is occurring there too, but remains well within temperate ranges.

I do believe that Homo sapiens may ultimately win the climate battle and bring atmospheric CO2 back down to 300 ppm or something. But that’s a hundred years off. And there’s no guarantee we can stop the tide of Greenland and Antarctic ice melt to prevent sea level rise. In the meantime, in the next 50 to 100 years, it’s going to get a lot warmer. And we may ultimately lose New York City, Singapore, Mumbai, and every other low-lying coastal city. My new home is fifty feet above sea level. Well, probably forty-nine and a half now.

The song of the Lesser Goldfinch: Another harbinger of a warming climate

As the climate warms, different thresholds are crossed for different species at different times. For the Lesser Goldfinch, that time seems to be now—both in the core and northern edges of its range, where the species is increasing, and in some parts of the southern arid regions, where it is decreasing.

As I prepare to migrate myself from Davis, California to Port Townsend, Washington, I’m serenaded by Lesser Goldfinches every time I step outside. This is a new thing, a warning of coming heat and smoke brought by a beautiful voice. A more open and arid country version of the American Goldfinch, until five or ten years ago, Lesser Goldfinches were sparse breeders in Davis. I would get a few of them mixed with Americans at my feeder in winter, but I’d have to go west to the more arid edges of the Sacramento Valley, or up into the hot dry foothills, to find them in the breeding season.

They arrived in my neighborhood as nesters about five years ago. This year, 2021, they seem to be the most ubiquitous singing bird, setting up terrorities throughout the town. Friends in Sacramento have reported the same. This comes after several years of record heat and lack of rain (only 6″ in all of 2020).

Here’s what the eBird data says. For comparison, Northern Mockingbird, one of the most common birds in town, is reported from about 20 eBird locations in Davis each June (ranging from 16 in 2015 and 14 in 2016 to 18-22 in the more recent years as eBird users and reports increased). Using mockingbird as a metric for Davis, it’d be fair to say that 20 sites represents close to 100% presence throughout the town, and that number was probably 25% lower (i.e. 15 sites) in 2015. Lesser Goldfinches have increased from reports from four sites in June of 2015 (representing about 20% of the town) to 17 sites in June of 2020 (representing 85% of the town). It feels like it will be 100% this year.

They are not the only arid-country species increasing in Davis as a breeder. Nesting Say’s Phoebes have expanded up from the south, with multiple pairs in Woodland each year (and it’s looking like Davis this year as well).

As with so many less-migratory species, Lesser Goldfinches are expanding north into the Pacific Northwest and beyond.  Their colonization of the Columbia River Valley began in the 1950s, with the first state of Washington record in 1951; they are now established around Portland, The Dalles, and in the vicinity of Clarkston on the Idaho border. They remain rare elsewhere, but increases in records have been dramatic in recent years. In the northern Puget Trough region (Chehalis north thru Puget Sound to Canada), June records have increased from 1 in 2015 and 2016 to 10 in 2020 (as reported on eBird). While they have clearly gained a toe-hold in Olympia and Puyallup in the South Sound region, in 2020 they made appearances in Victoria and Vancouver, Canada (not shown in the data because these records were in May, not June).

Lesser Goldfinches in British Columbia were limited to four scattered records until 2007. Since then, they have become nearly annual, with most records between January and June.

This is a pattern seen in other resident and less-migratory species. Many of those that were already growing before detectable climate change (around 1985) have expanded noticeably since then. Anna’s Hummingbird is the most dramatic example.

Further east, Lesser Goldfinches are moving due north from Yakima and Kennewick into the Okanagan Valley. June records in this region have increased from zero in 2015 to eight in 2020.

All this is predicted. The National Audubon climate prediction map for Lesser Goldfinch, under the 2C warming scenario, describes much of what we are witnessing.

In the Mojave Desert, Lesser Goldfinches have declined. Iknayan and Beissinger (2018) reported them from only 43% of 61 study sites, compared to 68% historically. This is part of a massive avian community collapse in the Mojave Desert, as extreme aridity is pushing many species beyond their limits.

UPDATE NOV 2022: eBird released its Trends maps, which illustrate where species have been increasing (blue dots) and decreasing (red dots) between 2007 and 2021. The map for Lesser Goldfinch show exactly what I’ve described above: increasing in around Sacramento and Davis, decreasing in the western foothills (probably due to fires), increasing in Washington, particularly in the Columbia River Basin, and decreasing in the desert Southwest.

The renewable diesel revolution: How California is reshaping world oil markets

Despite all the attention on the new Biden Administration’s efforts to combat climate change, one state, California, is reshaping the world’s oil markets through its progressive climate policies.

Most dramatic has been the state’s shift to renewable diesel (RD). Unlike its green cousin, biodiesel, RD is molecularly identical to conventional ultra-low-sulfur-diesel (ULSD), making it a “drop-in” fuel. No modifications to engines, gas stations or pipelines are needed. It can be mixed with conventional diesel seamlessly. It is made from bio feedstock such as vegetable and animal oils such as canola, soybean, and corn oil, used cooking oil, tallow, and even municipal solid waste; the exact recipe varies. Current production methods reduce carbon emissions 50 to 85% compared to conventional diesel. RD burns cleaner than conventional diesel, producing 30% less particulates. In addition to less air pollution, this also means less wear on engines.

A 20% RD mixture is called R-20. The ferry boats in San Francisco Bay are running on R-100. UPS, Amazon Prime, and Cherokee Freight Line trucks are now switching to RD, at least in California where the fuel is available. Internationally, cargo vessels with diesel-electric engines are adopting the fuel.

Many cities in California – Oakland, San Francisco, Sacramento, San Diego – now exclusively use RD in city-owned heavy-duty trucks, buses and equipment.

Renewable diesel already accounts for 20% of California’s diesel supply and is projected to grow well beyond 50% by 2024, expanding to include jet fuel, where it is called “sustainable jet fuel”. Renewable propane is also produced during the refining process. Renewable gasoline, unfortunately, is still not economically feasible.

California’s RD comes from a variety of sources. It is imported from Singapore (Neste) and North Dakota. At the latter, the Marathon refinery in Dickinson, North Dakota, originally built to refine fracked Bakken oil, has converted to taking soybeans to make RD for the California market.

The California Energy Commission has identified enough proposed RD projects to supply all of the state’s needs in the future.

Increasingly, refineries in California are ramping up to produce RD from local feedstock. Two of the state’s largest refineries, Phillips 66 and Marathon in the Bay Area, are currently closed, using the Covid downturn to retrofit their operations into making RD. They will each produce 20% of the state’s diesel in the form of RD; they will completely cease using crude oil as an input. Other smaller refinery conversions are underway in southern California.

The California Energy Commission (CEC) projects that the state’s overall oil use, already down 20% due to the pandemic, will scarcely rebound and then continue declining in the future.

Washington and Oregon are taking steps to increase RD supply in their states. (Phillips 66 had originally sought to convert their Cherry Point refinery near Bellingham, WA, to RD production but ran into permitting problems. They are now trying again.) [Note: Phillips 66’s “Green Apple” plan to convert the Cherry Point refinery ran into permitting obstacles with the WA Dept of Ecology over – wait for it – carbon emissions. After an EIS was required, Phillips pulled their plans.]

This conversion to non-petroleum-based fuels is being driven by a combination of federal and state laws. The federal government already offers a $1/gallon tax credit for conversion to renewable fuels. Since the credit is bankable and tradeable, it’s essentially real cash. The program is set to expire at the end of 2022 but is likely to be extended with bipartisan support.

At the state level, California’s ever-lowering cap of tradeable permits under the AB32 cap-and-trade program is finally biting hard enough to change incentives. Carbon credits are now yielding about 30 cents/gallon and is likely to rise. Because this comes from traded permits, it is not a direct payment from government funds.

Combining federal and state incentives, a refinery converting from conventional to renewable diesel reaps an additional $1.30/gallon. If the Phillips 66 project goes to its full 800 million gallons/year, that’s at least a billion dollars each year in subsidies – from tax credits and tradable carbon credit sales.

California has already reduced greenhouse gas emissions 15-20% since the peak in 2004. This has been achieved during a period of significant economic and population growth; emissions per gross domestic product are down about 45%. Because the transportation sector has been among the most challenging for reducing emissions, the RD revolution will go a long way to helping California reach net zero by 2050. The Biden Administration is using California’s carbon reduction measures as a model for the nation.

The RD revolution is a transition to more dramatic decreases in oil use due to electrification of the vehicle fleet.

Mojave Desert bird populations plummet due to climate change

Two recent papers concluded that many breeding bird species in southern California and Nevada deserts have declined dramatically due to climate change.

In their abstract, Iknayan and Beissinger (2018) summarized, “We evaluated how desert birds have responded to climate and habitat change by resurveying historic sites throughout the Mojave Desert that were originally surveyed for avian diversity during the early 20th century by Joseph Grinnell and colleagues. We found strong evidence of an avian community in collapse.”

They re-surveyed 61 sites originally surveyed by Grinnell teams in the early 20th century (primarily between 1917 and 1947).

Of 135 species assessed (which included some wintering and migrating species, as well as breeding species), 39 had significantly declined; only one (Common Raven) had increased. This was in stark contrast to similar assessments they conducted of Sierra and Central Valley sites, where more species had increased than decreased and there were no overall declines (not to say there weren’t winners, losers, and range shifts within those regions).

Figure 1B from Iknayan and Beissinger (2018). Every study site had fewer species than previously– on average each site had lost 43% of their species.

Detailed analyses suggested less rainfall and less access to water was the primary driver. Habitat change only affected 15% of the study sites and was of secondary importance. They found no evidence of expansion of species from the hotter, drier Sonoran Desert (e.g. Phainopepla, Verdin, Black-throated Sparrow) into the Mojave Desert.

Consistent with a community collapse, declines were greatest among species at the top of food chain — carnivores such as Prairie Falcon, American Kestrel, and Turkey Vulture. Insectivores were the next most impacted, and herbivores the least. But the declines affected both common and rare species, both generalists and specialists.

Figure 1B from Iknayan and Beissinger (2018), which I’ve augmented with species labels from the database available in the supplementary materials. Other significant losers (red dots), in order of degree of decline, included Western Kingbird, Western Meadowlark, Black-chinned Sparrow, Lawrence’s Goldfinch, Bushtit, Ladder-backed Woodpecker, and Canyon Wren. The yellow dots are newly invasive species: Chukar, Eurasian Collared-Dove, Eurasian Starling, and Great-tailed Grackle.

A follow-up study by Riddell et al (2020), also involving Iknayan and Beissinger, focused on the thermoregulatory costs — the water requirements to keep cool — for the declining species. They found that “species’ declines were positively associated with climate-driven increases in water requirements for evaporative cooling and exacerbated by large body size, especially for species with animal-based diets.” Larger species get much of their water from the insects they eat. They estimated larger species would have to double or triple their insect intake to meet their water needs, though insect abundance is lowest July thru September.

American Kestrels were among the biggest losers in the study, struggling to meet their cooling needs.

Intriguingly, they found that 22 species had actually declined in body size over the last century, consistent with Bergmann’s Rule, and had reduced their cooling costs up to 14%. These species fared better. Current climate change, however, is at least ten times more rapid than any previous warming event, during which many species evolved. They estimated cooling costs have already increased 19% and will reach 50% to 78% under most scenarios, far outstripping any species’ ability to evolve through the current rapid warming.

These results stand in stark contrast to the Pacific Northwest, where many of the same bird species (e.g. Anna’s Hummingbird, Turkey Vulture, Northern Mockingbird) are increasing. This is consistent with projections which generally show individual declines along species’ southern edge and expansions at the north edge of their range (see Audubon climate projection maps for individual species).

Iknayan and Beissinger conclude, “Our results provide evidence that bird communities in the Mojave Desert have collapsed to a new, lower baseline. Declines could accelerate with future climate change, as this region is predicted to become drier and hotter by the end of the century.”