Heading south for winter, more birds are choosing the Pacific Northwest

Many papers predict that bird ranges will shift northward with a warming climate (Wu et al 2018, Langham et al 2015).

Many studies have already documented that this is happening (Illán et al. 2014, Virkkala, R. and A. Lehikoinen 2014, Hitch and Leberg 2007, and La Sorte and Thompson 2007).

And some have documented poleward range shifts specifically for wintering ranges (Saunders et al 2022, Hampton 2019, Paprocki et al 2017, Prince and  Zuckerberg 2016, and Paprocki et al 2014).

I’ve previously written about an increase in insectivore bird species in winter associated with a warming climate in the Sacramento Valley. As the Putah Creek Christmas Bird Count (CBC) compiler, it was hard not to notice the trends. Cassin’s Vireo, Black-throated Gray and Townsend’s Warblers, and Western Tanagers were becoming more expected in winter. We had crossed a threshold; we didn’t get freezes anymore. My bougainvillea and cape honeysuckle, which previously clung to life in winter, were now growing and blooming year-round. Fruit and insects were available to these birds.

Now in Port Townsend, Washington, we set a local CBC record for Yellow-rumped Warblers last year. This caused me to take a closer look at the data, focusing on Passerines that are rare or uncommon, and at the northern edge of their wintering range. They are: Hermit Thrush, Cedar Waxwing, Lincoln’s Sparrow, White-crowned Sparrow, Orange-crowned Warbler, and Yellow-rumped Warbler. For each of these, the PNW is at the northern limits of their wintering range.

I looked at their numbers and trends on the Portland, Olympia, Seattle, Bellingham, and Vancouver BC CBCs since the 76th CBC (winter 1975-76). I’ve got more notes on my methodology at the end.

Results

All have increased since 1975, generally with the uptick beginning in the 1990s. Here are the results of my inquiry.

The range maps are from eBird’s Abundance Maps. Red=summer; blue=winter; purple=year-round; yellow=migration. The graphs show the birds per party hour across the five CBCs, taking the total number of birds and dividing by the total number of hours across all five counts.

Hermit Thrush

Hermit Thrush has been increasing at a rate of 4.2% per year across all the CBCs. It has been increasing across all five of the counts, most strongly in Vancouver (4.1% annual growth) and most tepid in Seattle (0.6%). It is most common on the Portland count, which has averaged 26 Hermit Thrushes per count since 2009.

Cedar Waxwing

Of the six species I focused on, Cedar Waxwing showed some of the most erratic growth, averaging only 2.5% per year. That said, it has been above average 8 of the last 9 years. To illustrate the unpredictable nature of waxwings, they have actually been declining on the Olympia (-2.3%/yr) and Vancouver (-4.1%/yr) counts. They are increasing the most on the Portland count (3.0%/yr).

Lincoln’s Sparrow

Lincoln’s Sparrow has been increasing steadily, from near zero, at an overall rate of 3.6% per year. To put this in perspective, these five CBCs tallied 5 or fewer individuals, summed across all counts, in each of the first five years of this analysis. In each of the last five years, these counts, in aggregate, tallied between 34 and 52 individuals. Growth has been strongest on the Olympia count (4.6%/yr) and weakest on the Bellingham count (1.7%/yr).

White-crowned Sparrow

Despite the eBird map, White-crowned Sparrow is a regular overwintering species in the PNW. The five counts, in aggregate, tally between 100 and 750 individuals each year. They’ve been increasing at a rate of 1.8% per year, strongest in Seattle (3.1%/yr) and weakest in Vancouver (-2.5%/yr, the only count with declining numbers).

Orange-crowned Warbler

Orange-crowned Warbler has seen dramatic increases, averaging 5.0% per year, highest in Olympia (7.2%/yr) and lowest in Bellingham (3.2%/yr). The numbers, however, are still small. Aggregate numbers across all counts were zero five of the first eleven years of this analysis (easily seen on the graph). Double digits were not reached until 1999. The last ten years, however, have averaged 15 individuals across all the counts, making this an expected species in winter now.  

Yellow-rumped Warbler

Yellow-rumped Warbler wins the award for poster child of species increasing in winter at the northern edge of their wintering range. They’ve been increasing at a rate of 5.3% per year. Interestingly, this growth is concentrated in the south. Portland (3.7%/yr), Olympia (3.4%/yr), and Seattle (6.1%/yr) have seen the most growth, while Bellingham (-0.5%) and Vancouver (-5.0%) have seen declines. Perhaps those Fraser River winds are too cold for warblers. 

Methodology

The data includes bird per party hour for the Portland, Olympia, Seattle, Bellingham, and Vancouver BC Christmas Bird Counts from the 75th count (winter 1975-76) to the 120th count (winter 2019-20). The 121st count was impacted by the pandemic.

CBC (and Breeding Bird Survey) data is uniquely advantageous for looking at long-term trends such as climate change, as they both go back many decades with generally similar effort over time (for certain well-established counts). Nevertheless, there were some issues with this data:

  • I did not use the Portland data from the 76th thru the 82nd count, due to aberrantly low party hours relative to later counts.
  • The following data was missing entirely from the Audubon CBC database: Olympia 76th, 77th, 78th, 84th, 104th, and 110th counts; and Seattle 91st count.
  • The following counts had no (or obviously incorrect) data for party hours: Portland 104th count; Bellingham 111th, 112th, and 119th counts. Because they did have bird numbers, I approximated the party hours based on their counts in nearby years. I used 230 party hours for the Portland count and 200 party hours for the Bellingham counts.

Other climate-related bird changes in the Pacific Northwest

I’ve previously blogged about climate change and birds in the Pacific Northwest:

The invasion of the Pacific Northwest: California’s birds expand north with warmer winters looks at northward range expansions of Great Egret, Turkey Vulture, Red-shouldered Hawk, Anna’s Hummingbird, Black Phoebe, Townsend’s Warbler, and California Scrub-Jay, with some discussion of others as well. Note that Townsend’s Warbler, as a migrant that winters rarely in the PNW, fits with the group of birds described in this post.

The song of the Lesser Goldfinch: Another harbinger of a warming climate looks at increasing records in the PNW in summer.

Mapping the expansion of the California Scrub-Jay into the Pacific Northwest looks at the steady range expansion of this non-migratory species.

References

Hampton, S. 2019. Avian responses to rapid climate change: Examples from the Putah Creek Christmas Bird Count. Central Valley Birds 22(4): 77-89.

Hitch and Leberg. 2007. Breeding distributions of North American bird species moving north as a result of climate change. Conservation Biology 21(2): 534-9.

Illán et al. 2014. Precipitation and winter temperature predict long-term range-scale abundance changes in Western North American birds. Global Change Biology, 20 (11), 3351–3364.

Langham et al 2015. Conservation status of North American birds in the face of future climate change. PLoS ONE 10(9): e0135350.

La Sorte, F.A., and F.R. Thompson III. 2007. Poleward shifts in winter ranges of North American birds. Ecology 88(7):1803–1812.

Paprocki et al. 2014. Regional Distribution Shifts Help Explain Local Changes in Wintering Raptor Abundance: Implications for Interpreting Population Trends. PLoS ONE 9(1): e86814.

Paprocki et al. 2017. Combining migration and wintering counts to enhance understanding of population change in a generalist raptor species, the North American Red-tailed Hawk. The Condor, 119 (1): 98–107.

Prince, K. and B. Zuckerberg. 2016. Climate change in our backyards: the reshuffling of North America’s winter bird communities. Global Change Biology 21(2): 572-585.

Saunders et al. 2022. Unraveling a century of global change impacts on winter bird distributions in the eastern United States. Global Change Biology

Virkkala, R. and A. Lehikoinen 2014. Patterns of climate-induced density shifts of species: poleward shifts faster in northern boreal birds than in southern birds. Global Change Biology 20: 2995–3003.

Wu et al. 2018. Projected avifaunal responses to climate change across the U.S. National Park System. PLOS ONE 13(3): e0190557.

I try to maintain an updated list of references at the Birds and Climate Change Facebook group. At that page, click on Files to find the list.

A Nazca Booby, a tug, a barge, and a pit: A climate parable

At 9:30am on August 17, that is, yesterday, I got a text from another birder. A Nazca Booby had just been seen from Discovery Point near Seattle. What’s more, we knew exactly where the bird was now; it was perched on the bow of a barge being pulled by the tug Seaspan Raider.

The Nazca Booby, atop the barge, photographed by Matt Stolmeier, captain for Outer Island Excursions.

The Nazca Booby is a tropical seabird that breeds exclusively on the Galapagos Islands. When not nesting, it occurs at sea in the eastern Pacific, generally between central Mexico and northern Peru.

Breeding (orange) and non-breeding (blue) range of the Nazca Booby.

This was Washington’s third record. The first, quite possibly the same bird, was on August 14, 2020, in pretty much the same part of Puget Sound. The second was a few weeks ago also off Seattle. That one was an immature, not an adult, so we know it was a different individual. It then showed up off Victoria, providing Canada with its third record.

The Nazca Booby first arrived in the United States in California in 2013. I actually played a role in that first record, a dead beachcast bird found in the aftermath of an oil spill. Working for the state’s spill response, I brought it to the attention of the California Bird Records Committee and had experts examine the carcass for identification. That bird was not a one-off event; it was the beginning of an invasion. There were a few scattered records in the following years, followed by an explosion of 26 records in 2018 and 21 in 2019. After that, California removed the species from its “review list”. While some of these records may have been the same individuals, it is remarkable that a tropical bird previously unheard-of in the US was suddenly widespread. Oregon got its first two records in 2018 and 2019.

Sea surface temperature (SST) of 66.1F off the Washington/Oregon coast.

Checking sea surface temperatures, I see that the water off the Washington and Oregon coasts is reaching 66F in places, only 4F cooler than on the south side of the Galapagos. Zooming out, it is easy to see a route from there to here where the bird never had to encounter sea surface temps under 60F. The Strait of Juan de Fuca is in the low 50s, but it does approach 60F near Seattle.

I opened the MarineTraffic app and quickly located the Seaspan Raider. It was southwest of Edmunds, northbound at 7.3 knots. I calculated it would arrive off Port Townsend between 1 and 2pm. Birders scrambled, heading to various coastal promontories on both sides of Puget Sound. I headed to Point Wilson, where Puget Sound effectively ends and meets the Strait of Juan de Fuca. The tug, bound for Canada, would have to pass by me here.

Reports came in. The bird had flown off the barge. It was in the water off Edmunds. It took off. It was seen from both sides. No one knew where it was.

Tracking the tug using the MarineTraffic app.

This wasn’t the only booby in the Salish Sea at the moment. A Brown Booby had been photographed a few days earlier near the San Juans. That was yet another tropical seabird that had already invaded the US, with records from over forty states, including Alaska. Two decades ago, this would have been unimaginable. And this summer, 2022, was already noteworthy across the Midwest and East Coast for the mass invasion of waterbirds typically found only in Florida or the Gulf Coast. Limpkins, Wood Storks, White Ibis, Roseate Spoonbills and many others were showing up hundreds of miles north of their previously known ranges.

Scrolling thru the American Birding Association Rare Bird Alert nationwide posts, limited to just mega-rarities, here is what pops up: Brown Booby in Oklahoma, Neotropic Cormorant in North Carolina, Brown Booby in Wisconsin, two Swallow-tailed Kites in Ohio, Limpkin in Wisconsin, Neotropic Cormorant in Michigan, White Ibis in New York, Wood Stork in Pennsylvania, Heermann’s Gull in Alaska, Limpkin in Illinois, Nazca Booby in California, White Ibis in Nebraska, etc. And that doesn’t even get us back to August 1. These are all birds, mostly aquatic birds, well north of their normal ranges.

Our current rate of climate warming hasn’t been seen since the Paleocene-Eocene Thermal Maximum (PETM) 55 million years ago. Then, there were alligators within the Arctic Circle. Kind of like Nazca Boobies are now a thing in Puget Sound. Actually, our current rate of warming is much faster than then. During the PETM, the climate warmed 5C in five thousand years. The current rate of warming is eighteen times faster. Then, no one would have noticed. Now, there is 1C of warming – and, with it, dramatic changes in climate and ecology – within the lifespan of a single bird. Some seabirds are showing us that they can keep up, thanks to their ability to fly long distances. I’m not sure about the alligators. Or birds that depend, say, on oak trees. The birds can fly, but the oaks can’t.

Two hours passed. I was ready to give up and head home, my only consolation being “MAMU CF”, a Marbled Murrelet making a provisioning flight across the Sound, carrying a fish to its single chick somewhere on a moss-covered Doug fir branch a hundred feet above the forest floor, probably in the Olympic Mountains. I’d only seen that once before. Much of their range in California has been lost to fires in the past five years, so this Olympic chick is important.

The original photo of the Nazca Booby on the barge, by Alex Meilleur.

One birder, who was unable to search for the Nazca Booby, called some of the local orca boats, as he worked on some of them. He let them know about the bird, as some were near it. About twenty minutes later, texts came in. They had re-found it! It was back on the same barge, now approaching Marrowstone Point. I spun my scope south. There, beyond the ferry lane, I could make out the red and white structure of the Seaspan Raider, pulling its barge, all blurry and shimmering in the distant heat mirage, slowly chugging toward me.

Taking advantage of the outgoing tide, the Seaspan Raider was now hitting 9 knots. It is powered by two Niigata 6m G25HX diesel engines. I don’t know what kind of gas mileage it gets, but, because it presumably refueled in Washington, most of its fuel is likely conventional diesel, but a small component may be renewable diesel.

Renewable diesel is not the same as biodiesel. Biodiesel can be mixed with conventional diesel, but only in very small amounts, like 2%. Renewable diesel, on the other hand, is molecularly identical to conventional diesel. It’s a relatively new invention. Made from non-petroleum sources, such as plant and animal material, it is to conventional diesel what corn syrup is to sugar; it is a “drop-in ready” alternative fuel. It can be mixed with or substituted for conventional diesel seamlessly, with no change in gas pumps, pipelines, or engines. In fact, it burns slightly cleaner, so engines last longer. It emits fewer particulates and, most importantly, its greenhouse gas footprint is up to 80% less. Its use is already widespread in California, where two of the state’s largest refineries no longer take petroleum crude.

This is the kind of thing that should have been developed thirty years ago, just after James Hansen of NOAA briefed congress on climate change in 1986. Now it’s late. We’ve already had more than 1C of climate warming, with more coming and probably ten feet of sea level rise built into the system. Stopping carbon emissions is no longer a suitable goal. We’ve already pushed the cart down the ramp. It’s rolling. We need to reverse climate change, to change that ramp so the cart rolls back to where it was. That will require actually sucking CO2 out of the air – negative emissions – which will certainly take a hundred years under the most optimistic scenarios. So get ready for more boobies, maybe even Limpkins and alligators.

Aside about Washington: Washington further delayed action a few years ago when the Department of Ecology required an Environmental Impact Statement from Phillips 66 to convert their refinery at Cherry Point to make renewable diesel. That is to say, Phillips needed to jump through major permitting hurdles because they were changing – that is, reducing — their greenhouse gas emissions. Phillips didn’t want to wait the several years required for this, so they promptly moved their operation to California. Governor Inslee tried to intervene and save the project, but it was too late. Now BP is picking up the baton in Washington.

Renewable diesel is already in widespread use in trucks, especially in California. The ferries in San Francisco Bay are powered exclusively by it. Because diesel is similar to jet fuel, and made during the same refining process, refineries also produce what is called sustainable aviation fuel (SAF). Aircraft are currently permitted to fly with up to a 50/50 blend of SAF and conventional jet fuel. Boeing promises jets that can fly with 100% SAF by 2030. We’ll be approaching 1.5C of warming by then. Nazca Booby will almost certainly be off the rare bird review list, at least in California. Brown Boobies will be breeding on the Farallones and prospecting further north.

I watched as orca boats came and went from the barge, photographing the Nazca Booby. I was told it was on the starboard side of the roof of the little structure on the bow. The tug and barge continued up Admiralty Inlet until it was straight out from me, as close as it would pass. Slightly more than halfway across the channel, it remained blurred in heat mirage. I could see fuzzy white dots on the described rooftop, but I couldn’t tell you if they were Nazca Boobies or gulls or volleyballs. In birder’s lingo, this was going to be a ‘dip’, even though I knew exactly where the bird was and was looking at it.

My view of the tug, barge, and bird.

Mathematically, this would be at least the sixth time a Nazca Booby had passed this point, my point, my sea watch. And this time I was here, ready and waiting, and still I couldn’t see it. Were it not for the texts and the orca boats, I’d never know it was there. I kept my scope glued to it, hoping it would lift off in a distinctive flight and head directly toward me, where it would join the Caspian Terns and plunge dive right in front of me as I clicked my camera in ecstasy. But it didn’t. The tug and barge chugged north.

The bird was last seen at Partridge Point on Whidbey Island, still riding the barge. It was off the barge by Rosario Inlet. I’m guessing it jumped ship and headed toward Victoria or Smith Island.

The barge’s destination was the Lafarge Texada Quarrying Ltd. limestone mine north of Vancouver. Limestone is critical to making cement. The cement-making process is responsible for 8% of the world’s carbon emissions. Part of that is from the energy used in production, which requires a kiln heated to 1,400 degrees Celsius. But most of the emissions comes from the limestone itself. Forty percent of the weight of limestone is CO2, and this is burned off in the process. There are efforts to improve the cement-making process, to make it less dependent on limestone, to reduce its carbon emissions. That’s all coming in the future.

The limestone mine at Beale Cove, the barge’s destination.

I’m wondering about the ancient Nazca civilization in what is now Peru. It was dependent on a remarkable network of underground aqueducts that delivered mountain water to their arid home. There’s a theory that they over-harvested a certain tree, which led to erosion of riversides during heavy rains, destroying their water delivery system. I wonder if they had meetings about the problem, if they had new policies in effect, at least at the end, when it was too late.

It’s supposed to be 95F in the Seattle suburbs today. I’m not worried about missing this Nazca Booby. There will be more.

The Nazca Booby on the bow. I’m sure the scope views were better. Photo by Laura Brou.

Mapping the expansion of the California Scrub-Jay into the Pacific Northwest

This blog post is merely to provide a visual illustration, by way of a map, of the expansion of the California Scrub-Jay across Washington, British Columbia, eastern Oregon, Idaho, and even Montana (one record so far). It is intended to complement my more detailed article, “Tracking Expansion of the California Scrub-Jay Into the Pacific Northwest”, in the Washington Ornithological Society (WOS) News, August-September 2021 edition.

California Scrub-Jays are often first detected at bird feeders in suburban areas. As aggressive nest predators, jays should not be subsidized by anthropogenic food sources. In short, please don’t feed the corvids. Port Townsend, WA. April 2021.

As becomes clear in the article, these are not hard lines. The jays are advancing gradually, not in a solid wave. Typically, a single jay will appear well outside the known range (e.g. Spokane). Within a year or two, there will be several. Then they’ll be breeding. Then they will begin expanding further. Meanwhile, a wave of jays will be backfilling the new territory, with densities increasing annually. The lines in this map are as much art as science, but are intended to show the primary region were jays were “regular and expected”. There were always outliers, pioneer dispersers expanding the range. Records beyond the 2020 line are shown as pale blue dots.

CLICK MAP TO ENLARGE

The expansion of the California Scrub-Jay mimics that of several other species, mostly non-migratory or short-distance migrants, rapidly expanding from California and Oregon into the Pacific Northwest.

The jay’s expansion has already surpassed that predicted by the Audubon Society’s climate model under a 3.0 degree Celsius scenario, shown here.

The jay’s expansion, when considered in the context of timing and trends in other species, is likely a function of a warming climate combined with suitable food sources. For more discussion of this, see the WOS article linked above.

They seem to be particularly taking advantage of warmer winters in the lower Columbia River Basin.

It will be interesting to see where the 2030 scrub-jay “contour line” will be. I predict they’ll be on Vancouver Island from Victoria to Campbell River, as well as up the Sunshine Coast, up the Okanagan Valley to Kelowna and possibly Kamloops, and east to Idaho, from Coeur d’Alene in the north throughout the Snake River Valley in the south.

After that, they face some formidable hurdles. The biggest obstacles to their expansion further north and east will be habitat with limited food sources (e.g. high mountains). That said, they’ve already shown some ability to travel up mountain valleys and potentially cross the Cascades north of Mount Rainier.

Like most corvids, California Scrub-Jays are big time cachers, storing extra food for future use. I took this photo in southern California, October 2017, when a family of jays were repeatedly stripping an oak, two acorns at a time, flying over a nearby ridge to cache them, and then returning again and again throughout the morning.

Goodbye California: Reminiscences of a climate refugee

There are a lot of reasons why I’m moving from California to Washington, including family and other personal considerations. But one reason, one big reason, is California’s rapidly changing climate.

It was late February in the Coast Range of northern California when I was wearing shorts and a t-shirt. Dust swirled around my car in the dirt parking lot at Cold Canyon. The car thermometer, warmed by a sun that felt imported from Palm Springs, said 87 degrees; it was actually only 77. A hint of ash, omnipresent since The Fire last summer, remained in the air.

Its oaks torched with little hope of return, Putah Creek Canyon is quickly resembling a sun-scorched canyon in Arizona. Until 2018, only one fire in the area had burned more than 15 square miles. Then the County Fire burned 140 square miles. In 2020, the LNU Complex Fire burned 570 square miles.

The hillsides were green with the new growth of non-native grass, which was responding to a recent heavy rain. That was deceptive. More than half the rain we’d had in the previous eight months came in that single event. We had six inches of rain in all of 2020. Looking beyond the grass, nearly every tree – blue oaks and gray pines – on the hillsides was dead, burnt black and orange monuments to a previous era. For our local blue oak woodland, that era ended last year and, given that recruitment of saplings is unlikely due to heat, fire, and cattle, it was an era that will never return.

Massive die-offs are eliminating blue oaks from the southern third of their range. Black oaks are marching up the Sierra, displacing Ponderosa pine, which are marching up, displacing firs. Everyone is on the move. Oak woodlands are becoming oak savannahs, oak savannahs are becoming grasslands, grasslands are becoming rocky high deserts. Arizonification is happening quickly, thru heat, drought, and ultimately, thru fire.

Virtually all of the east slopes of the Coast Range between San Francisco Bay and the Trinity Alps has burned in the past ten years. In the Sierra, one can practically predict where the next fire catastrophe will happen, because it hasn’t burned yet (hint: Lake Almanor, Placerville, Arnold).

The Fire, the LNU Complex Fire, was part of 2020’s 4.3 million acres of scorched earth. The LNU Fire exceeded the total acreage of all previous fires that impacted my county over the last 50 years combined.

It was a beautiful day—for April. But February has become April, April has become May, and June, July, August, September, and even October and November have become unrecognizable. Every year more heat records are broken. Hottest summer, hottest month, most days over 100, most days over 90. The list goes on, each year breaking the records set the previous year. Weather data is normally highly variable; now it is a straight line—warmer and warmer. And smokier.

My cape honeysuckle and bougainvillea, both planted with a degree of optimism outside their recommended zone, used to die back so badly in the winter that each spring I was tempted to declare them dead and pull them out. Now they bloom year-round, looking like they’re in a courtyard at a hotel in the tropics. We haven’t had a real freeze in seven winters.

The songs of lesser goldfinches on my street are a depressing warning. I can’t take two steps outside without seeing or hearing a bird that reminds me that our climate has seriously changed. Western tanagers, house wrens, and turkey vultures are regular in winter now. The lesser goldfinches have come out of the arid hills and are quickly becoming one of the most ubiquitous nesting birds in Davis. (I know this definitively because one included an imitation of a canyon wren in its song.) What’s more, at least four Say’s phoebes, essentially a high desert species, are scouting for nests in town now. A fifth arrived on my block last week, singing as if on territory. They’ve been doing this for a few years and their numbers are growing.

The graphs of acres burned in California (and in other western states) and the expansion of some bird species into the Pacific Northwest (in this case, Anna’s hummingbirds in winter), are strikingly similar.

I’m leaving. I’ve lived in California fifty-five years but it’s no longer the state I grew up in.

We’re headed to the Olympic Peninsula in Washington. We are fortunate to be able to do so.

Besides the cooler summers, one of the best things about moving to a new place is that I won’t be reminded of climate change on a daily experiential basis. Because the ecosystem will be new to me, I won’t know what’s different, what is changing, except maybe for the brown boobies, a tropical seabird, that are now showing up in Puget Sound each year. Or the family of California scrub-jays that have just established residence on my new street. Like Anna’s hummingbirds, black phoebes, great egrets, red-shouldered hawks, and people like me, scrub-jays are moving north. I expect more of California’s birds to follow me, just as I follow some of them. Yes, lesser goldfinches are coming north too; they’re already established southeast of Tacoma.

I feel like a frog in a boiling pot. I’m getting out. I’m saying goodbye to California, but I feel it has left all of us without saying goodbye to anyone.

The view from Point Wilson, a mile from my new home in Port Townsend, which has had only a few nights below freezing all winter. Climate change is occurring there too, but remains well within temperate ranges.

I do believe that Homo sapiens may ultimately win the climate battle and bring atmospheric CO2 back down to 300 ppm or something. But that’s a hundred years off. And there’s no guarantee we can stop the tide of Greenland and Antarctic ice melt to prevent sea level rise. In the meantime, in the next 50 to 100 years, it’s going to get a lot warmer. And we may ultimately lose New York City, Singapore, Mumbai, and every other low-lying coastal city. My new home is fifty feet above sea level. Well, probably forty-nine and a half now.

The song of the Lesser Goldfinch: Another harbinger of a warming climate

As the climate warms, different thresholds are crossed for different species at different times. For the Lesser Goldfinch, that time seems to be now—both in the core and northern edges of its range, where the species is increasing, and in some parts of the southern arid regions, where it is decreasing.

As I prepare to migrate myself from Davis, California to Port Townsend, Washington, I’m serenaded by Lesser Goldfinches every time I step outside. This is a new thing, a warning of coming heat and smoke brought by a beautiful voice. A more open and arid country version of the American Goldfinch, until five or ten years ago, Lesser Goldfinches were sparse breeders in Davis. I would get a few of them mixed with Americans at my feeder in winter, but I’d have to go west to the more arid edges of the Sacramento Valley, or up into the hot dry foothills, to find them in the breeding season.

They arrived in my neighborhood as nesters about five years ago. This year, 2021, they seem to be the most ubiquitous singing bird, setting up terrorities throughout the town. Friends in Sacramento have reported the same. This comes after several years of record heat and lack of rain (only 6″ in all of 2020).

Here’s what the eBird data says. For comparison, Northern Mockingbird, one of the most common birds in town, is reported from about 20 eBird locations in Davis each June (ranging from 16 in 2015 and 14 in 2016 to 18-22 in the more recent years as eBird users and reports increased). Using mockingbird as a metric for Davis, it’d be fair to say that 20 sites represents close to 100% presence throughout the town, and that number was probably 25% lower (i.e. 15 sites) in 2015. Lesser Goldfinches have increased from reports from four sites in June of 2015 (representing about 20% of the town) to 17 sites in June of 2020 (representing 85% of the town). It feels like it will be 100% this year.

They are not the only arid-country species increasing in Davis as a breeder. Nesting Say’s Phoebes have expanded up from the south, with multiple pairs in Woodland each year (and it’s looking like Davis this year as well).

As with so many less-migratory species, Lesser Goldfinches are expanding north into the Pacific Northwest and beyond.  Their colonization of the Columbia River Valley began in the 1950s, with the first state of Washington record in 1951; they are now established around Portland, The Dalles, and in the vicinity of Clarkston on the Idaho border. They remain rare elsewhere, but increases in records have been dramatic in recent years. In the northern Puget Trough region (Chehalis north thru Puget Sound to Canada), June records have increased from 1 in 2015 and 2016 to 10 in 2020 (as reported on eBird). While they have clearly gained a toe-hold in Olympia and Puyallup in the South Sound region, in 2020 they made appearances in Victoria and Vancouver, Canada (not shown in the data because these records were in May, not June).

Lesser Goldfinches in British Columbia were limited to four scattered records until 2007. Since then, they have become nearly annual, with most records between January and June.

This is a pattern seen in other resident and less-migratory species. Many of those that were already growing before detectable climate change (around 1985) have expanded noticeably since then. Anna’s Hummingbird is the most dramatic example.

Further east, Lesser Goldfinches are moving due north from Yakima and Kennewick into the Okanagan Valley. June records in this region have increased from zero in 2015 to eight in 2020.

All this is predicted. The National Audubon climate prediction map for Lesser Goldfinch, under the 2C warming scenario, describes much of what we are witnessing.

In the Mojave Desert, Lesser Goldfinches have declined. Iknayan and Beissinger (2018) reported them from only 43% of 61 study sites, compared to 68% historically. This is part of a massive avian community collapse in the Mojave Desert, as extreme aridity is pushing many species beyond their limits.

UPDATE NOV 2022: eBird released its Trends maps, which illustrate where species have been increasing (blue dots) and decreasing (red dots) between 2007 and 2021. The map for Lesser Goldfinch show exactly what I’ve described above: increasing in around Sacramento and Davis, decreasing in the western foothills (probably due to fires), increasing in Washington, particularly in the Columbia River Basin, and decreasing in the desert Southwest.

The 2018 flight of the Buff-breasted Sandpipers: Data from the West Coast

Buff-breasted Sandpipers breed on the Arctic tundra from western Alaska, across northern Canada, to Baffin Island. They winter eight thousand miles to the south, on the grasslands of the River Plate Basin in Argentina, Uruguay, and Paraguay. Their primary migration corridor is east of the Rockies, through the central United States. A secondary route is along the East Coast. They are always rare in fall migration along the West Coast, with four to fourteen individuals counted each fall between 2014 and 2017. In spring, they are almost unheard of (there is one record in eBird from Arcata, California in May, 1980).

Fall migration in 2018 was exceptional on the West Coast, with sixty-five individuals reported, five to ten times the norm. The figure below summarizes eBird data from the past five years in southern British Columbia, Washington, Oregon, and California.

CLICK TO ENLARGE.

BBSA

A few interesting points:

  • While fall migration generally spans from mid-August thru late September, the timing of records within that period are not strongly correlated with latitude.  That is, it does not appear that birds are moving from north to south through the period. Each season’s latest records, from mid or late September, may come from British Columbia or Washington as easily as from southern California. That said, in 2018, the latest records are indeed from southern California. Moreover, the very few October records over the years (not included in the graph) are from southern California.
  • They are most reliable in the Pacific Northwest, only reaching California in years of relative abundance, such as 2018. The only location with records from every year is Salmon Arm Bay of Shuswap Lake, in the interior of British Columbia. Other sites, with records in all but one year, are Boundary Bay, British Columbia, and the south coast of Washington (e.g. Ocean Shores, Gray’s Harbor vicinity).
  • The vast majority of records are of single individuals. The only time more than four birds were documented together during these years was in 2018, with five birds at once at Sauvie Island, Oregon, and a remarkable thirteen at Boundary Bay.
  • In the years 2014-2017, Buff-breasted Sandpipers first appeared between August 15 and 19. In 2018, they did not appear until August 23, and most were relatively later than birds in previous years.
  • In 2018, there were several records from offshore California: one from the Farallons, two from San Clemente Island, and two birds seen together from a pelagic trip one hundred miles off southern California. These were all relatively early in migration, between August 25 and September 1. In contrast, most 2018 records from the Oregon coast were from the first week of September.