Northward expansion of Northern Cardinal, Carolina Wren, Tufted Titmouse, and Red-bellied Woodpecker

A number of recent academic papers have described northward shifts of bird species in both North America and Europe, driven by climate change. These papers usually present aggregated results from dozens of species; they rarely provide details for any specific species. These maps are intended to offer that.

While there are tremendous species-specific differences, non-migratory resident birds (such as Northern Cardinal, Carolina Wren, Tufted Titmouse, and Red-bellied Woodpecker) appear to be the most adaptable and have expanded their ranges the most. This seems to be primarily driven by warmer winters and, for some species, is further augmented by bird feeders.

I created these maps using eBird, so the usual caveats apply– they don’t necessarily include all records (though many historical out-of-range records are indeed included), and eBird reporting, which became widespread only after 2010, continues to increase dramatically each year. To draw the lines, my intent was to capture the primary range area — and more — but I deliberately excluded the furthest ten to fifteen outliers for each line.

CLICK TO ENLARGE GRAPHICS

Northern Cardinals (once called Kentucky Cardinals) have been expanding north for decades, but have increased their rate.
Carolina Wren is a classic example of a species knocked back by harsh winters, finding some refuge around bird feeders, and then continuing to expand in warmer winters. See a graph of this at my previous post here.
Like many species, Tufted Titmouse has especially expanded northeast up the St. Lawrence River corridor.
To get a feel for what this expansion actually looks like in one place, see the graphs below from Christmas Bird Counts. Similar graphs could be made for all of these species.

For some examples of western species expanding north from California and southern Oregon into the Pacific Northwest, see this post: The invasion of the Pacific Northwest: California’s birds expand north with warmer winters.

I invite you to join the Facebook group dedicated to this topic: Birds and Climate Change.

Two of the academic papers that report climate-driven range expansions in eastern North America are listed below, along with their abstracts.

Prince, K. and B. Zuckerberg. 2016. Climate change in our backyards: the reshuffling of North America’s winter bird communities. Global Change Biology 21(2): 572-585.

Much of the recent changes in North American climate have occurred during the winter months, and as result, overwintering birds represent important sentinels of anthropogenic climate change. While there is mounting evidence that bird populations are responding to a warming climate (e.g., poleward shifts) questions remain as to whether these species-specific responses are resulting in community-wide changes. Here, we test the hypothesis that a changing winter climate should favor the formation of winter bird communities dominated by warm-adapted species. To do this, we quantified changes in community composition using a functional index–the Community Temperature Index (CTI)–which measures the balance between low- and high-temperature dwelling species in a community. Using data from Project FeederWatch, an international citizen science program, we quantified spatiotemporal changes in winter bird communities (n = 38 bird species) across eastern North America and tested the influence of changes in winter minimum temperature over a 22-year period. We implemented a jackknife analysis to identify those species most influential in driving changes at the community level and the population dynamics (e.g., extinction or colonization) responsible for these community changes. Since 1990, we found that the winter bird community structure has changed with communities increasingly composed of warm-adapted species. This reshuffling of winter bird communities was strongest in southerly latitudes and driven primarily by local increases in abundance and regional patterns of colonization by southerly birds. CTI tracked patterns of changing winter temperature at different temporal scales ranging from 1 to 35 years. We conclude that a shifting winter climate has provided an opportunity for smaller, southerly distributed species to colonize new regions and promote the formation of unique winter bird assemblages throughout eastern North America.

Saunders et al. 2022. Unraveling a century of global change impacts on winter bird distributions in the eastern United States. Global Change Biology

One of the most pressing questions in ecology and conservation centers on disentangling the relative impacts of concurrent global change drivers, climate and land-use/land-cover (LULC), on biodiversity. Yet studies that evaluate the effects of both drivers on species’ winter distributions remain scarce, hampering our ability to develop full-annual-cycle conservation strategies. Additionally, understanding how groups of species differentially respond to climate versus LULC change is vital for efforts to enhance bird community resilience to future environmental change. We analyzed long-term changes in winter occurrence of 89 species across nine bird groups over a 90-year period within the eastern United States using Audubon Christmas Bird Count (CBC) data. We estimated variation in occurrence probability of each group as a function of spatial and temporal variation in winter climate (minimum temperature, cumulative precipitation) and LULC (proportion of group-specific and anthropogenic habitats within CBC circle). We reveal that spatial variation in bird occurrence probability was consistently explained by climate across all nine species groups. Conversely, LULC change explained more than twice the temporal variation (i.e., decadal changes) in bird occurrence probability than climate change on average across groups. This pattern was largely driven by habitat-constrained species (e.g., grassland birds, waterbirds), whereas decadal changes in occurrence probabilities of habitat-unconstrained species (e.g., forest passerines, mixed habitat birds) were equally explained by both climate and LULC changes over the last century. We conclude that climate has generally governed the winter occurrence of avifauna in space and time, while LULC change has played a pivotal role in driving distributional dynamics of species with limited and declining habitat availability. Effective land management will be critical for improving species’ resilience to climate change, especially during a season of relative resource scarcity and critical energetic trade-offs.

3 thoughts on “Northward expansion of Northern Cardinal, Carolina Wren, Tufted Titmouse, and Red-bellied Woodpecker

  1. As someone who has been watching birds – and everything else – since I was a boy in the 1950s, your maps are fascinating.

    I’m assuming that these particular birds are also increasing in numbers? I definitely see more cardinals now than 30 yrs ago. At the same time, this past fall I was very disturbed at how many bird nests were revealed when the leaves came down. In Toronto, Canada and the surrounding area, I saw almost none. It was shocking – just 10 yrs ago I would discover a couple of new ones every day.

    There are butterflies that are expanding their range, yet most butterflies are in decline. Is this the same with birds?

    Like

    • Alan, I think it’s very species-dependent with birds. Some are increasing; some are decreasing– and some are doing both, increasing in the north, decreasing in the south (e.g. Fish Crow and Eastern Towhee, which I intend to focus on later). Same in the west– many species are expanding north, but the Mojave has seen a marked decrease due to decreased rain and lack of water sources.

      Liked by 1 person

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s