Honorific bird names facts and figures

Here is a closer look at the eponymous (mostly honorific) names for the most familiar species in North America.

At the American Ornithological Society (AOS) Congress on English Bird Names on April 16, 2021, a host of prominent organizations and individuals endorsed “bird names for birds”, a widespread effort to rename eponymous or honorific species names with more descriptive names, focusing on their physical or ecological attributes.

This Analysis: 80 familiar species

Scott’s Oriole was named after two brothers and then, later, the Commanding General of the US Army.

Looking at Version 8.0.8 (March 12, 2021) of the ABA Checklist, 116 of the 1,123 species, or a little over 10%, are named after people. Of the 116 in the ABA area, two (Bishop’s Oo and Bachman’s Warbler) are considered extinct, one is an introduced species in Hawaii (Erckel’s Francolin), and 32 others are Codes 3, 4 or 5, meaning they occur rarely in the ABA area. The remaining 80 are all Code 1 or 2 and can be expected to be seen in the ABA area regularly. The following analyses focuses on these 80 familiar species.

The Birds

The first thing to note is that these 80 species come from a wide array of families and species groupings. As with all birds, Passerines are dominant, making up 49% of the list. Digging deeper, seabirds and Passerines with limited ranges (mostly warblers and sparrows) are over-represented—because they were described relatively late in the European discovery process, when honorific naming became more in vogue.

Naming Patterns

The AOU (American Ornithological Union, the precursor to the AOS) began proposing English names in its first checklist in 1886, but didn’t complete the effort – and the names were not universally accepted – until the 5th edition in 1957. Meanwhile, the Latin scientific names have always followed a clear rule: the Latin name is set by the first published description of a species. The “bird names for birds” movement is focused on English names only.

Eponymous naming was rare in the 18th century, limited to just four of the 80 species, all emanating from Russian/German and British field work, primarily focused on the far north. The four early birds are Steller’s Eider (1769), Blackburnian Warbler (1776), Steller’s Jay (1788), and Barrow’s Goldeneye (1789).

Then, in 1811, Alexander Wilson named a woodpecker and a nutcracker after Lewis and Clark, and honorific naming was off and running, peaking in the mid-1800s.

Eponyms for the 80 Code 1 and Code 2 species are overwhelmingly honorific. Only six are named after the describer himself (Wilson’s Warbler, Sabine’s Gull, Brandt’s Cormorant, Townsend’s Warbler, Gambel’s Quail, and Cory’s Shearwater), and it’s not clear that even all of them intended for the species to have an eponym; the Latin names for the warbler, cormorant, and shearwater suggest otherwise. Wilson himself called his warbler the Green Black-capped Flycatcher and the western subspecies went by Pileolated Warbler (coined by Pallas) as late as the 1950s.

The namers were widespread – 36 different people provided the 80 names, though four stand out. John James Audubon provided fifteen of the eponymous names, Spencer Baird and John Cassin each provided seven, and Rene Lesson four. Together, these four ornithologists were responsible for 41% (33/80) of the honorific names in this analysis. In addition, many eponymous subspecies were coined by Baird.

CLICK TO ENLARGE

Locations on the diagram only loosely correspond to the time axis due to space constraints.

The majority of the namers were connected to each other, with many naming birds after colleagues, who in turn named species after other colleagues. Lesson described Audubon’s Shearwater and Oriole; Audubon described Baird’s Sparrow; Baird described Woodhouse’s Scrub-Jay; Woodhouse described Cassin’s Sparrow; Cassin described Lawrence’s Goldfinch; Lawrence described LeConte’s Thrasher.

There are no examples of a quid pro quo, where two people named birds after each other, unless you count Audubon’s Warbler, described by Townsend in 1837; Audubon returned the favor with Townsend’s Solitaire the following year. Or Coues, who christened a sandpiper after Baird in 1861; four years later, Baird named a warbler after Coues’ sister, Grace.

Despite Audubon’s dominant role in honorific naming, no Americans honored him (excepting Townsend with Audubon’s Warbler); only Lesson, a Frenchman, did.

A third of the species (27 of 80) have Latin names that do not match the honorific English name. In most instances this is because the bird was accidentally described twice. Most often, they were not originally intended to have an honorific name. A person described the species and gave a descriptive Latin name, then later another person described the same species and gave an honorific name. For example, Lichtenstein described A. aestivalis in 1823, then Audubon described it again in 1839, naming it Bachman’s Sparrow. When it was realized the two were the same species, the Latin name provided by the first publication held, but, at least in these instances, the honorific English name was also given—a kind of consolation prize to the second describer. Thus, what was called Pinewoods or Oakwoods Sparrow became Bachman’s Sparrow.

Among the 80 species in this analysis, this double-describing happened at least 18 times. Curiously, six of these were by Audubon and account for 40% of his honorific bestowments. These are Harris’s Hawk, Bachman’s Sparrow, MacGillivray’s Warbler, Harris’s Sparrow, Brewer’s Blackbird, and Smith’s Longspur. MacGillivray’s Warbler was intended to be Tolmie’s Warbler as described by Townsend; the other five have descriptive Latin names. There is one other double-described species that has a Latin honorific—Scott’s Oriole, Icterus parisorum, originally named after the Paris brothers. Most of the others have descriptive Latin names.

Cassin’s Auklet (P. aleutica) and Cassin’s Kingbird (T. vociferans) were first described, respectively, before Cassin was born and when Cassin was just thirteen. Clearly the original describers did not intend to honor Cassin. However, by the 1886 AOU checklist both carried the Cassin moniker, though there is no record that I could find how or why that came to be (and even a co-author of the auklet’s Birds of North American species account didn’t know the answer).

Interestingly, two species have Latin names derived from indigenous words: pipixcan of Franklin’s Gull is Nahuatl for the gull or possibly the Aztec region in Mexico; sasin of Allen’s Hummingbird is Noo-chah-nulth (Nootka) for hummingbird, a reference to when the species was lumped with Rufous Hummingbird. The gull was described twice, which is how it ended up honoring Franklin. The hummingbird was split, providing an opportunity for another name. Ironically, Allen’s, not Rufous, Hummingbird always bore the Noo-chah-nulth name which emanates from Vancouver Island.

Correlated with the timing, a clear regional pattern emerges. Because the common eastern species had already been described a century earlier, western species with honorific names outnumber eastern ones nearly ten to one. A map plotting the year of description with the core of the species’ range mimics European expansion – and ethnic cleansing of Native Americans – across the continent in the nineteenth century.

The Honorees

As for the honorees, most were naturalists, either doing field work or promoting it (70 of 80), most were Americans (55 of 80) or at least had spent some time in North America (add ten more). French collectors dominated the hummingbirds.

Only six species honor women—or girls. Blackburne is the early outlier, a British naturalist honored by one of the German ornithologists in the late 1700s. Neither spent time in North America; the type specimen comes from South America. Curiously, the eponymic title is not in the possessive form (e.g. Blackburne’s Warbler). For reasons unknown to me, the Latin name was changed from blackburniae to fusca before 1910.

During the surge of honorifics in the mid-1800s, the only females honored were friends or family, and they only got first names. Anna, age 27 when the hummingbird was named in her honor, was the wife of an ornithologist and a lady-in-waiting in the court of Emperor Napoleon III’s wife. She was described by Audubon as a “beautiful young woman, not more than twenty, extremely graceful and polite.” Virginia was the wife of William Anderson, the original collector; she was honored by Baird at Anderson’s request. Grace, also honored by Baird, was Elliot Coues’s sister. Lucy, age 13, honored by James G. Cooper, was Baird’s daughter.

We don’t return to female scientists – and last names – until the 1900s, with Scripps, who was honored in 1939, and her bird didn’t reach species status until 2012.

Most of the honorees have no obvious indications of a checkered past (66 of 80), though most of these were quite comfortable associating with, or honoring with bird names, those who were slaveholders, white supremacists, or actively involved in killing or removing Native Americans, even while these actions were hotly debated and contested at the time among whites—and universally opposed by Blacks and Native Americans. As early as 1920, the entire concept of eponymous bird names was challenged.

CLICK TO ENLARGE

Locations are intended to approximate the location of the species’ range or location of type specimen.

The dominance of western species among honorific names with morally objectionable pasts is no accident. Many of the ornithologists working in the West were attached to US military expeditions or other surveys of colonization, such as railroad surveys or the border survey after the Mexican-American War. They often served as doctors while doing naturalist work on the side. Many were likely looking for a vehicle to get into the field.

Others were active combatants, with the naturalist work coming on the side. William Clark, after the famous 1803 expedition, played a leadership role in the ethnic cleansing of Native Americans for three decades. Abert served as a soldier under John Fremont’s Third Expedition and likely participated in the Sacramento River massacre of Wintu families, deemed horrific by their contemporaries. General Winfield Scott, not a naturalist in any way, was honored by Couch with an oriole precisely for his role as the Commanding General of the US Army, which included overseeing the arrest, detainment, and expulsion of the Cherokee during the Trail of Tears.

But why did they turn to honorific naming when their predecessors did not? Was it the spirit of conquest, of erasing the former occupants of the land, that gave them the presumption and bravado to name even the birds after each other? After all, mountains, rivers, valleys, and large regions of land were all being re-named and claimed as European.

White supremacy permeated the sciences. Crania Americana was published between 1839 and 1849 by Samuel Morton, a colleague of several of the naturalists. Townsend collected skulls for him. During the same era, to support the Indian Removal Act and other similar policies, the Mound Builder Myth, asserting that Native Americans were not actually native, but that North America was originally populated by Europeans, was widely taught in grade schools across the land. The land was originally European, so the story went. This theory was eventually laid to rest thanks to the efforts of John Wesley Powell, but only after most Natives were detained in concentration camps.

In short, the scientific fields were permeated with white supremacy and a sense of white ownership. Ornithological research found itself interlocked with US military endeavors and, on the Western frontier, far from Eastern progressive voices advocating abolition and respect for slaves and Natives. In this climate, honorific naming eventually ran amok, often foundering on the rocky shores of slavery and ethnic cleansing, aka manifest destiny.

It would be wrong to assume that “everyone was doing it.” In 1822, Thomas Say, honored by Charles Bonaparte with the phoebe, described Long-billed Dowitcher, Band-tailed Pigeon, Dusky Grouse, Western Kingbird, Rock Wren, Lark Sparrow, Lesser Goldfinch, Lazuli Bunting, and Orange-crowned Warbler, giving all of them descriptive names.

Caveat: Researching the origins of species’ names is challenging, especially for those described more than once or subject to taxonomic revisions. Corrections from knowledgeable readers are much appreciated. Regardless of errors, the larger picture, the trends regarding time and place, still hold.

Note: Updated June 2, 2021 to include Blackburnian Warbler.

I’ve added some thoughts addressing the question: Should we hold people in the past accountable to present-day mores?

As a citizen of Cherokee Nation, here is my personal connection to Scott’s Oriole.

Bird names matter: Top ornithologists and organizations endorse name changes for all species named after people

At the American Ornithological Society (AOS) Congress on English Bird Names on April 16, 2021, a host of prominent organizations and individuals endorsed “bird names for birds”, a widespread effort to rename eponymous or honorific species names with more descriptive names, focusing on their physical or ecological attributes. For example, Wilson’s Warbler could become Black-capped Warbler, Townsend’s Solitaire might become Northern or Juniper Solitaire, and Kittlitz’s Murrelet would probably be re-named Glacier Murrelet.

MacGillivray’s Warbler was named by John James Audubon after his friend, William MacGillivray, a Scottish ornithologist who never came to America. Audubon also coined its Latin specific, tolmiei, to honor William Fraser Tolmie, a Scottish employee of Hudson’s Bay Company based at Fort Nisqually during the period of Native removal. Scientific, or Latin names, are subject to international rules and are not the focus of this process.

While specific new names have not yet been chosen, representatives of the American Birding Association (ABA), National Audubon Society, as well as David Sibley and Kenn Kaufmann, all heartily endorsed developing a process to make the changes, noting that new names would engage a larger audience, contribute to greater equity and inclusivity among birders and the interested public, and could aid in public communication and conservation efforts.

The effort has grown out of the national reckoning on racial equality in the aftermath of the George Floyd killing. Movements to change names are underway with regard to parks, mountains, streets, other wildlife, and even rock-climbing routes. Current names generally go back to the eighteenth and nineteenth centuries during European expansion across North America and recall an era of conquest, when species and landforms were “discovered” – and some named after the individual who documented them, or after their friends and colleagues.

An FAQ, full list of the panelists, and a video of the Congress can be found at the AOS English Bird Names website. The direct link to the video is here.

Sibley commented that, the more he learns about the names, “the more they cast a shadow over the bird” and “the name doesn’t mean just the bird anymore. They have baggage.” Out of respect for people and the birds, they “should not have to carry a reminder of our own fraught history.” Choosing between stability and respect, Sibley stated “I choose respect.”

Name changes over social justice concerns began last year when McCown’s Longpsur was changed to Thick-billed Longspur, after widespread outcry because McCown was a Confederate general and involved in the ethnic cleansing of Native Americans. A proposal in 2018 for that name change was roundly rejected. 

Name changes for these reasons are not new; most birders can probably recall the switch from Oldsquaw to Long-tailed Duck in 2000. At that time, the American Ornithologists’ Union, the precursor to the AOS, asserted that the name change was not for reasons of “political correctness” but merely to conform with usage elsewhere.

The Bird Names for Birds website includes bios of various people memorialized with bird names. For example, Townsend (of the solitaire, warbler, and storm-pretrel) collected Native skulls for his friend Samuel Morton, author of Crania Americana. The November 2020 issue of Birding magazine focused on name changes, with a strong endorsement by ABA President Jeffrey Gordon and a longer article providing historical background. It is available here for ABA members.

Bird Names for Birds, a group of interested birders, was instrumental in reaching out to the larger organizations to participate in the congress. In their words, “Eponyms (a person after whom a discovery, invention, place, etc., is named or thought to be named) and honorific common bird names (a name given to something in honor of a person) are problematic because they perpetuate colonialism and the racism associated with it. The names that these birds currently have—for example, Bachman’s Sparrow—represent and remember people (mainly white men) who often have objectively horrible pasts and do not uphold the morals and standards the bird community should memorialize.” They describe such names as “verbal statues” that should be removed.

Jordan Rutter of Bird Names for Birds argued that, when reaching out to the public to protect an endangered sparrow, Bachman’s Sparrow has much less appeal than an alternative name rooted in local ecology that the public could identify with. Kaufmann pointed out that Bachmann was a pro-slavery white supremacist and that the species was formerly known as the Pinewoods Sparrow.

In the AOS’s own language, “The Community Congress opens the discussion on the complex issues around eponymous English Bird Names…. The specific aim of the Community Congress is to provide an opportunity for a broad range of stakeholders from the birding and ornithological community to share their viewpoints, including challenges and opportunities from their perspectives, to best inform future next steps to address the issue of naming birds after people.”

The AOS Congress on English Bird Names was superbly moderated by José González, providing a model for the process ahead.

Keepers of various ornithological databases also participated in the Congress, including representatives for eBird, Christmas Bird Counts, Breeding Bird Surveys, and the Bird Banding Laboratory. While noting potential complications with name changes (and changes in four-letter banding codes), they all agreed the hurdles were not insurmountable. Indeed, name changes, as well as taxonomic lumps and splits, occur every year, with name changes being the simplest of the three to address in data management. eBird currently supports bird names in 47 languages, including 14 different versions of English. Where Americans see Black-bellied Plover, Brits see Grey Plover.

Marshall Iliff of eBird pointed out that the effort is also an opportunity to clean up old taxonomic messes, pointing out that Audubon’s Shearwater has been used for eleven different combinations of nine different taxa. In this case, he said, fresh names for specific taxa will provide clarity, not confusion. He embraced a worldwide effort to “dig into the essence of each species” to “find inspired and appropriate names.”

For now, the effort will be limited to primary eponymous English bird names. The effort will not include secondary names (e.g., American Crow, named after the continent, which was named after Amerigo Vespucci). Other problematic names, such as Flesh-footed Shearwater for a bird with pink feet, were not discussed.

Many suggested using Native names for species, though most stated this could be challenging because 1) names from Native languages may have been lost, or 2) most bird species’ ranges span multiple historic aboriginal territories and languages, creating a conundrum over which indigenous word to use. The exception to this is Hawaii, where indigenous names are already in widespread use. Among mammals, moose, raccoon, and skunk are all derived from Algonquian.

Does Lawrence’s Goldfinch deserve a better name?

Looking at Version 8.0.8 (March 12, 2021) of the ABA Checklist, 115 of the 1,123 species, or a little over 10%, are named after people. Of these, 2 (Bishop’s Oo and Bachman’s Warbler) are considered extinct, and 20 others are Code 4 or 5, meaning they occur extremely rarely in the ABA area (though three of these are regular in Mexico, within the AOS area). The remaining 93 are all Code 1, 2, or 3, and can be expected to be seen in the ABA area regularly.

Here are the 113 non-extinct species from the ABA Checklist.

Ross’s Goose

Steller’s Eider

Stejneger’s Scoter

Barrow’s Goldeneye

Gambel’s Quail

Erckel’s Francolin

Clark’s Grebe

Vaux’s Swift

Rivoli’s Hummingbird

Anna’s Hummingbird

Costa’s Hummingbird

Allen’s Hummingbird

Xantus’s Hummingbird

Ridgway’s Rail

Wilson’s Plover

Temminck’s Stint

Baird’s Sandpiper

Wilson’s Snipe

Wilson’s Phalarope

Kittlitz’s Murrelet

Scripps’s Murrelet

Craveri’s Murrelet

Cassin’s Auklet

Sabine’s Gull

Bonaparte’s Gull

Ross’s Gull

Franklin’s Gull

Pallas’s Gull

Belcher’s Gull

Heermann’s Gull

Forster’s Tern

Salvin’s Albatross

Wilson’s Storm-Petrel

Swinhoe’s Storm-Petrel

Leach’s Storm-Petrel

Townsend’s Storm-Petrel

Tristram’s Storm-Petrel

Murphy’s Petrel

Fea’s Petrel

Zino’s Petrel

Cook’s Petrel

Stejneger’s Petrel

Bulwer’s Petrel

Jouanin’s Petrel

Parkinson’s Petrel

Cory’s Shearwater

Buller’s Shearwater

Newell’s Shearwater

Bryan’s Shearwater

Audubon’s Shearwater

Brandt’s Cormorant

Cooper’s Hawk

Steller’s Sea-Eagle

Harris’s Hawk

Swainson’s Hawk

Lewis’s Woodpecker

Williamson’s Sapsucker

Nuttall’s Woodpecker

Nutting’s Flycatcher

La Sagra’s Flycatcher

Couch’s Kingbird

Cassin’s Kingbird

Hammond’s Flycatcher

Say’s Phoebe

Bell’s Vireo

Hutton’s Vireo

Cassin’s Vireo

Steller’s Jay

Woodhouse’s Scrub-Jay

Clark’s Nutcracker

Bewick’s Wren

Pallas’s Leaf Warbler

Blyth’s Reed Warbler

Pallas’s Grasshopper-Warbler

Middendorff’s Grasshopper-Warbler

Townsend’s Solitaire

Bicknell’s Thrush

Swainson’s Thrush

Bendire’s Thrasher

LeConte’s Thrasher

Sprague’s Pipit

Pallas’s Rosefinch

Cassin’s Finch

Lawrence’s Goldfinch

Smith’s Longspur

McKay’s Bunting

Pallas’s Bunting

Botteri’s Sparrow

Cassin’s Sparrow

Bachman’s Sparrow

Brewer’s Sparrow

Worthen’s Sparrow

Harris’s Sparrow

Bell’s Sparrow

LeConte’s Sparrow

Nelson’s Sparrow

Baird’s Sparrow

Henslow’s Sparrow

Lincoln’s Sparrow

Abert’s Towhee

Bullock’s Oriole

Audubon’s Oriole

Scott’s Oriole

Brewer’s Blackbird

Swainson’s Warbler

Lucy’s Warbler

Virginia’s Warbler

MacGillivray’s Warbler

Kirtland’s Warbler

Grace’s Warbler

Townsend’s Warbler

Wilson’s Warbler

Morelet’s Seedeater

There are also several hybrids (e.g. Brewster’s and Lawrence’s Warblers), prominent subspecies (e.g. Thayer’s Gull and Audubon’s Warbler), and superspecies (e.g. Traill’s Flycatcher) that are used in some databases. It is not clear if these will be addressed at this time.

Goodbye California: Reminiscences of a climate refugee

There are a lot of reasons why I’m moving from California to Washington, including family and other personal considerations. But one reason, one big reason, is California’s rapidly changing climate.

It was late February in the Coast Range of northern California when I was wearing shorts and a t-shirt. Dust swirled around my car in the dirt parking lot at Cold Canyon. The car thermometer, warmed by a sun that felt imported from Palm Springs, said 87 degrees; it was actually only 77. A hint of ash, omnipresent since The Fire last summer, remained in the air.

Its oaks torched with little hope of return, Putah Creek Canyon is quickly resembling a sun-scorched canyon in Arizona. Until 2018, only one fire in the area had burned more than 15 square miles. Then the County Fire burned 140 square miles. In 2020, the LNU Complex Fire burned 570 square miles.

The hillsides were green with the new growth of non-native grass, which was responding to a recent heavy rain. That was deceptive. More than half the rain we’d had in the previous eight months came in that single event. We had six inches of rain in all of 2020. Looking beyond the grass, nearly every tree – blue oaks and gray pines – on the hillsides was dead, burnt black and orange monuments to a previous era. For our local blue oak woodland, that era ended last year and, given that recruitment of saplings is unlikely due to heat, fire, and cattle, it was an era that will never return.

Massive die-offs are eliminating blue oaks from the southern third of their range. Black oaks are marching up the Sierra, displacing Ponderosa pine, which are marching up, displacing firs. Everyone is on the move. Oak woodlands are becoming oak savannahs, oak savannahs are becoming grasslands, grasslands are becoming rocky high deserts. Arizonification is happening quickly, thru heat, drought, and ultimately, thru fire.

Virtually all of the east slopes of the Coast Range between San Francisco Bay and the Trinity Alps has burned in the past ten years. In the Sierra, one can practically predict where the next fire catastrophe will happen, because it hasn’t burned yet (hint: Lake Almanor, Placerville, Arnold).

The Fire, the LNU Complex Fire, was part of 2020’s 4.3 million acres of scorched earth. The LNU Fire exceeded the total acreage of all previous fires that impacted my county over the last 50 years combined.

It was a beautiful day—for April. But February has become April, April has become May, and June, July, August, September, and even October and November have become unrecognizable. Every year more heat records are broken. Hottest summer, hottest month, most days over 100, most days over 90. The list goes on, each year breaking the records set the previous year. Weather data is normally highly variable; now it is a straight line—warmer and warmer. And smokier.

My cape honeysuckle and bougainvillea, both planted with a degree of optimism outside their recommended zone, used to die back so badly in the winter that each spring I was tempted to declare them dead and pull them out. Now they bloom year-round, looking like they’re in a courtyard at a hotel in the tropics. We haven’t had a real freeze in seven winters.

The songs of lesser goldfinches on my street are a depressing warning. I can’t take two steps outside without seeing or hearing a bird that reminds me that our climate has seriously changed. Western tanagers, house wrens, and turkey vultures are regular in winter now. The lesser goldfinches have come out of the arid hills and are quickly becoming one of the most ubiquitous nesting birds in Davis. (I know this definitively because one included an imitation of a canyon wren in its song.) What’s more, at least four Say’s phoebes, essentially a high desert species, are scouting for nests in town now. A fifth arrived on my block last week, singing as if on territory. They’ve been doing this for a few years and their numbers are growing.

The graphs of acres burned in California (and in other western states) and the expansion of some bird species into the Pacific Northwest (in this case, Anna’s hummingbirds in winter), are strikingly similar.

I’m leaving. I’ve lived in California fifty-five years but it’s no longer the state I grew up in.

We’re headed to the Olympic Peninsula in Washington. We are fortunate to be able to do so.

Besides the cooler summers, one of the best things about moving to a new place is that I won’t be reminded of climate change on a daily experiential basis. Because the ecosystem will be new to me, I won’t know what’s different, what is changing, except maybe for the brown boobies, a tropical seabird, that are now showing up in Puget Sound each year. Or the family of California scrub-jays that have just established residence on my new street. Like Anna’s hummingbirds, black phoebes, great egrets, red-shouldered hawks, and people like me, scrub-jays are moving north. I expect more of California’s birds to follow me, just as I follow some of them. Yes, lesser goldfinches are coming north too; they’re already established southeast of Tacoma.

I feel like a frog in a boiling pot. I’m getting out. I’m saying goodbye to California, but I feel it has left all of us without saying goodbye to anyone.

The view from Point Wilson, a mile from my new home in Port Townsend, which has had only a few nights below freezing all winter. Climate change is occurring there too, but remains well within temperate ranges.

I do believe that Homo sapiens may ultimately win the climate battle and bring atmospheric CO2 back down to 300 ppm or something. But that’s a hundred years off. And there’s no guarantee we can stop the tide of Greenland and Antarctic ice melt to prevent sea level rise. In the meantime, in the next 50 to 100 years, it’s going to get a lot warmer. And we may ultimately lose New York City, Singapore, Mumbai, and every other low-lying coastal city. My new home is fifty feet above sea level. Well, probably forty-nine and a half now.

The song of the Lesser Goldfinch: Another harbinger of a warming climate

As the climate warms, different thresholds are crossed for different species at different times. For the Lesser Goldfinch, that time seems to be now—both in the core and northern edges of its range, where the species is increasing, and in some parts of the southern arid regions, where it is decreasing.

As I prepare to migrate myself from Davis, California to Port Townsend, Washington, I’m serenaded by Lesser Goldfinches every time I step outside. This is a new thing, a warning of coming heat and smoke brought by a beautiful voice. A more open and arid country version of the American Goldfinch, until five or ten years ago, Lesser Goldfinches were sparse breeders in Davis. I would get a few of them mixed with Americans at my feeder in winter, but I’d have to go west to the more arid edges of the Sacramento Valley, or up into the hot dry foothills, to find them in the breeding season.

They arrived in my neighborhood as nesters about five years ago. This year, 2021, they seem to be the most ubiquitous singing bird, setting up terrorities throughout the town. Friends in Sacramento have reported the same. This comes after several years of record heat and lack of rain (only 6″ in all of 2020).

Here’s what the eBird data says. For comparison, Northern Mockingbird, one of the most common birds in town, is reported from about 20 eBird locations in Davis each June (ranging from 16 in 2015 and 14 in 2016 to 18-22 in the more recent years as eBird users and reports increased). Using mockingbird as a metric for Davis, it’d be fair to say that 20 sites represents close to 100% presence throughout the town, and that number was probably 25% lower (i.e. 15 sites) in 2015. Lesser Goldfinches have increased from reports from four sites in June of 2015 (representing about 20% of the town) to 17 sites in June of 2020 (representing 85% of the town). It feels like it will be 100% this year.

They are not the only arid-country species increasing in Davis as a breeder. Nesting Say’s Phoebes have expanded up from the south, with multiple pairs in Woodland each year (and it’s looking like Davis this year as well).

As with so many less-migratory species, Lesser Goldfinches are expanding north into the Pacific Northwest and beyond.  Their colonization of the Columbia River Valley began in the 1950s, with the first state of Washington record in 1951; they are now established around Portland, The Dalles, and in the vicinity of Clarkston on the Idaho border. They remain rare elsewhere, but increases in records have been dramatic in recent years. In the northern Puget Trough region (Chehalis north thru Puget Sound to Canada), June records have increased from 1 in 2015 and 2016 to 10 in 2020 (as reported on eBird). While they have clearly gained a toe-hold in Olympia and Puyallup in the South Sound region, in 2020 they made appearances in Victoria and Vancouver, Canada (not shown in the data because these records were in May, not June).

Lesser Goldfinches in British Columbia were limited to four scattered records until 2007. Since then, they have become nearly annual, with most records between January and June.

This is a pattern seen in other resident and less-migratory species. Many of those that were already growing before detectable climate change (around 1985) have expanded noticeably since then. Anna’s Hummingbird is the most dramatic example.

Further east, Lesser Goldfinches are moving due north from Yakima and Kennewick into the Okanagan Valley. June records in this region have increased from zero in 2015 to eight in 2020.

All this is predicted. The National Audubon climate prediction map for Lesser Goldfinch, under the 2C warming scenario, describes much of what we are witnessing.

In the Mojave Desert, Lesser Goldfinches have declined. Iknayan and Beissinger (2018) reported them from only 43% of 61 study sites, compared to 68% historically. This is part of a massive avian community collapse in the Mojave Desert, as extreme aridity is pushing many species beyond their limits.

The renewable diesel revolution: How California is reshaping world oil markets

Despite all the attention on the new Biden Administration’s efforts to combat climate change, one state, California, is reshaping the world’s oil markets through its progressive climate policies.

Most dramatic has been the state’s shift to renewable diesel (RD). Unlike its green cousin, biodiesel, RD is molecularly identical to conventional ultra-low-sulfur-diesel (ULSD), making it a “drop-in” fuel. No modifications to engines, gas stations or pipelines are needed. It can be mixed with conventional diesel seamlessly. It is made from bio feedstock such as vegetable and animal oils such as canola, soybean, and corn oil, used cooking oil, tallow, and even municipal solid waste; the exact recipe varies. Current production methods reduce carbon emissions 50 to 85% compared to conventional diesel. RD burns cleaner than conventional diesel, producing 30% less particulates. In addition to less air pollution, this also means less wear on engines.

A 20% RD mixture is called R-20. The ferry boats in San Francisco Bay are running on R-100. UPS, Amazon Prime, and Cherokee Freight Line trucks are now switching to RD, at least in California where the fuel is available. Internationally, cargo vessels with diesel-electric engines are adopting the fuel.

Many cities in California – Oakland, San Francisco, Sacramento, San Diego – now exclusively use RD in city-owned heavy-duty trucks, buses and equipment.

Renewable diesel already accounts for 20% of California’s diesel supply and is projected to grow well beyond 50% by 2024, expanding to include jet fuel, where it is called “sustainable jet fuel”. Renewable propane is also produced during the refining process. Renewable gasoline, unfortunately, is still not economically feasible.

California’s RD comes from a variety of sources. It is imported from Singapore (Neste) and North Dakota. At the latter, the Marathon refinery in Dickinson, North Dakota, originally built to refine fracked Bakken oil, has converted to taking soybeans to make RD for the California market.

The California Energy Commission has identified enough proposed RD projects to supply all of the state’s needs in the future.

Increasingly, refineries in California are ramping up to produce RD from local feedstock. Two of the state’s largest refineries, Phillips 66 and Marathon in the Bay Area, are currently closed, using the Covid downturn to retrofit their operations into making RD. They will each produce 20% of the state’s diesel in the form of RD; they will completely cease using crude oil as an input. Other smaller refinery conversions are underway in southern California.

The California Energy Commission (CEC) projects that the state’s overall oil use, already down 20% due to the pandemic, will scarcely rebound and then continue declining in the future.

Washington and Oregon are taking steps to increase RD supply in their states. (Phillips 66 had originally sought to convert their Cherry Point refinery near Bellingham, WA, to RD production but ran into permitting problems. They are now trying again.)

This is all being driven by a combination of federal and state laws. The federal government already offers a $1/gallon tax credit for conversion to renewable fuels. Since the credit is bankable and tradeable, it’s essentially real cash. The program is set to expire at the end of 2022 but is likely to be extended with bipartisan support.

At the state level, California’s ever-lowering cap of tradeable permits under the AB32 cap-and-trade program is finally biting hard enough to change incentives. Carbon credits are now yielding about 30 cents/gallon and is likely to rise. Because this comes from traded permits, it is not a direct payment from government funds.

Combining federal and state incentives, a refinery converting from conventional to renewable diesel reaps an additional $1.30/gallon. If the Phillips 66 project goes to its full 800 million gallons/year, that’s at least a billion dollars each year in subsidies – from tax credits and tradable carbon credit sales.

California has already reduced greenhouse gas emissions 15-20% since the peak in 2004. This has been achieved during a period of significant economic and population growth; emissions per gross domestic product are down about 45%. Because the transportation sector has been among the most challenging for reducing emissions, the RD revolution will go a long way to helping California reach net zero by 2050. The Biden Administration is using California’s carbon reduction measures as a model for the nation.

The RD revolution is a transition to more dramatic decreases in oil use due to electrification of the vehicle fleet.

Mojave Desert bird populations plummet due to climate change

Two recent papers concluded that many breeding bird species in southern California and Nevada deserts have declined dramatically due to climate change.

In their abstract, Iknayan and Beissinger (2018) summarized, “We evaluated how desert birds have responded to climate and habitat change by resurveying historic sites throughout the Mojave Desert that were originally surveyed for avian diversity during the early 20th century by Joseph Grinnell and colleagues. We found strong evidence of an avian community in collapse.”

They re-surveyed 61 sites originally surveyed by Grinnell teams in the early 20th century (primarily between 1917 and 1947).

Of 135 species assessed (which included some wintering and migrating species, as well as breeding species), 39 had significantly declined; only one (Common Raven) had increased. This was in stark contrast to similar assessments they conducted of Sierra and Central Valley sites, where more species had increased than decreased and there were no overall declines (not to say there weren’t winners, losers, and range shifts within those regions).

Figure 1B from Iknayan and Beissinger (2018). Every study site had fewer species than previously– on average each site had lost 43% of their species.

Detailed analyses suggested less rainfall and less access to water was the primary driver. Habitat change only affected 15% of the study sites and was of secondary importance. They found no evidence of expansion of species from the hotter, drier Sonoran Desert (e.g. Phainopepla, Verdin, Black-throated Sparrow) into the Mojave Desert.

Consistent with a community collapse, declines were greatest among species at the top of food chain — carnivores such as Prairie Falcon, American Kestrel, and Turkey Vulture. Insectivores were the next most impacted, and herbivores the least. But the declines affected both common and rare species, both generalists and specialists.

Figure 1B from Iknayan and Beissinger (2018), which I’ve augmented with species labels from the database available in the supplementary materials. Other significant losers (red dots), in order of degree of decline, included Western Kingbird, Western Meadowlark, Black-chinned Sparrow, Lawrence’s Goldfinch, Bushtit, Ladder-backed Woodpecker, and Canyon Wren. The yellow dots are newly invasive species: Chukar, Eurasian Collared-Dove, Eurasian Starling, and Great-tailed Grackle.

A follow-up study by Riddell et al (2020), also involving Iknayan and Beissinger, focused on the thermoregulatory costs — the water requirements to keep cool — for the declining species. They found that “species’ declines were positively associated with climate-driven increases in water requirements for evaporative cooling and exacerbated by large body size, especially for species with animal-based diets.” Larger species get much of their water from the insects they eat. They estimated larger species would have to double or triple their insect intake to meet their water needs, though insect abundance is lowest July thru September.

American Kestrels were among the biggest losers in the study, struggling to meet their cooling needs.

Intriguingly, they found that 22 species had actually declined in body size over the last century, consistent with Bergmann’s Rule, and had reduced their cooling costs up to 14%. These species fared better. Current climate change, however, is at least ten times more rapid than any previous warming event, during which many species evolved. They estimated cooling costs have already increased 19% and will reach 50% to 78% under most scenarios, far outstripping any species’ ability to evolve through the current rapid warming.

These results stand in stark contrast to the Pacific Northwest, where many of the same bird species (e.g. Anna’s Hummingbird, Turkey Vulture, Northern Mockingbird) are increasing. This is consistent with projections which generally show individual declines along species’ southern edge and expansions at the north edge of their range (see Audubon climate projection maps for individual species).

Iknayan and Beissinger conclude, “Our results provide evidence that bird communities in the Mojave Desert have collapsed to a new, lower baseline. Declines could accelerate with future climate change, as this region is predicted to become drier and hotter by the end of the century.”

Keep Davis Water Treatment Ponds wild

The ponds at the Davis Wastewater Treatment Plant have been one of the top birding spots in Yolo County for over 50 years. With 212 species reported via eBird, only two other sites in the county have recorded more (Yolo Bypass Wildlife Area and Davis Wetlands).

Here’s a short video clip from October 2020 illustrating the amazing bird life. A family of Sandhill Cranes walks among thousands of geese, ducks, and shorebirds while the calls of curlews filled the air. A Peregrine Falcon and a Northern Harrier buzzed past. Though the ponds are no longer part of the water treatment plant operations, they still collect rain water and provide habitat. Over 14,000 ducks have been counted on them during the annual Christmas Bird Count. The list of rarities includes everything from Slaty-backed Gull and Arctic Tern to Vermillion Flycatcher.

Earlier this year, the Davis City Council voted 4-1 to lease these ponds to BrightNight solar to convert these ponds into a solar array. Aside from the obvious risk of bird mortality from panel strikes, the project would eliminate one of the best bird habitats in the county. The City Council’s decision has been criticized for its impact on wildlife, for the improper process bypassing the Natural Resources Commission, and for its poor financial terms (the city got ripped off). Gloria Partida, Dan Carson, Will Arnold, and Brett Lee approved it. Only Lucas Frerichs voted against the deal.

But it’s not too late to try to stop it. Here’s what you can do:

1. Call or email each City Council member and ask them to rescind their original vote. Their phone numbers are available here. We need three of them to overturn the original decision. Will Arnold has expressed regret for his vote and Gloria Partida was skeptical at the outset. We also may have an opportunity after the election with new Council member to overturn this decision.

  • Gloria Partida — gpartida@cityofdavis.org
  • Will Arnold — warnold@cityofdavis.org
  • Dan Carson — dcarson@cityofdavis.org
  • Brett Lee — blee@cityofdavis.org
  • Lucas Frerichs — lucasf@cityofdavis.org

2. Call or email Valley Clean Energy Alliance board members and ask them to reject the bid from BrightNight for a new power contract. Their emails are here:

  • Angel Barajas — angel.barajas@cityofwoodland.org
  • Dan Carson — dcarson@cityofdavis.org
  • Lucas Frerichs — lucasf@cityofdavis.org
  • Gary Sandy, Vice Chair — gary.sandy@yolocounty.org
  • Don Saylor — don.saylor@yolocounty.org
  • Tom Stallard, Chair — tom.stallard@cityofwoodland.org
  • Duane Chamberlain, alternate — duane.chamberlain@yolocounty.org
  • Xochitl Rodriguez, alternate — xochitl.rodriguez@cityofwoodland.org

3. Join the effort to increase transparency in City government that would have prevented this travesty. You can see more on that here.

Helping forests migrate: Planners race to plant trees adapted to the future climate

Researchers from UC Davis collect acorns in arid west Texas to plant on their campus in northern California. They estimate their climate in 2100 will be similar to that of Barstow or even Phoenix today. City staff from a town near Portland, Oregon travel to California and Arizona for seedlings they can take home and plant along their city streets. They are preparing for Portland’s weather to become like Sacramento today.

The range of Arizona oak. For one town near Portland, Oregon, the list of potential future street trees includes this species, as well as California buckeye, California laurel, and silverleaf oak.

With these regions breaking new heat records annually – Sacramento just topped 90 degrees for the 110th day (and counting) in 2020—and given that trees take decades to mature, the race is on. Birds can fly, mammals can walk, but trees expand their ranges very slowly. Most acorns from an oak end up within a few hundred yards from their home tree.

Climate velocity, the speed at which ecotones are shifting north, is much faster than that. Our climate is changing ten to one hundred times faster than during a global warming event 55 million years ago known as the Paleocene-Eocene Thermal Maximum (PETM). During that “rapid” spike, palm trees successfully migrated to the Arctic circle, but they had thousands of years to make it there.

Dead blue oaks in Fresno County, California. They experienced excessive mortality during the 2012-16 drought. These hills may revert to grassland. Researchers want to use the genes of the survivors as stock for the future in the north. For a full presentation of blue oak gene-assisted migration see this presentation by the California Department of Fish and Wildlife.

While trees can’t walk, they can die. Range contraction of trees along their southern xeric (dry) edge is happening in the American West right with the speed of climate change. Blue oak die-offs are widespread in the southern third of their range. From California to Colorado, conifers such as Ponderosa pine and Douglas-fir are disappearing from lower elevations. To quote Davis et al (2019), “In areas that have crossed climatic thresholds for regeneration, stand-replacing fires may result in abrupt ecosystem transitions to nonforest states.” When people talk about California becoming Arizona, the cleanup hitter in that process may be fire, but the first batters are heat, drought stress, and bark beetles. After fires, decreased soil moisture and increased vapor pressure deficit (VPD) associated with climate change are leading to reduced probability of regeneration (Davis et al 2019). In short, many forests are not coming back.

Ponderosa pines are disappearing from lower elevations of the Sierra in California. This has been documented in Colorado as well.

Range expansion of trees northward has been documented, but the pace is anemic, insufficient to keep up with the changing climate. One study in the east found that ranges in adult trees expanded north less than 150 yards per year (Sittaro et al 2017). They concluded, “our results add to the body of evidence suggesting tree species are mostly limited in their capacity to track climate warming…”

Recent mega fires include many of the drought-killed conifers in the southern Sierra. Research suggests regeneration may be imperiled due to a warming climate.

Researchers have discussed facilitating tree migration due to climate change for over a decade (Aitken et al 2008). For over a hundred years, botanists have recognized regional differences within the same plant species, and simple garden experiments have shown that local varieties do better. The standard rule of thumb has always been that local varieties are best; they are adapted to the local ecological niche. Now that is changing.

Recent research is showing that trees are now in the wrong places; the climate has shifted past them. Valley oaks, white fir, Douglas fir, ponderosa pine, Western hemlock, and lodgepole pine seedlings all do better when removed from their original home and moved north (Aitken and Bemmels 2015).

The local trees are becoming misfits in a world that is changing around them. Many researchers are hesitant to fully embrace assisted migration; introducing non-native species has a horrid track record. But they are beginning to study “assisted gene flow”, moving hardy trees from the southern end of a species’ range to the north end. Cities, on the other hand, are beginning to see trees as more than just aesthetically pleasing; they are critical infrastructure, providing shade and reducing urban temperatures. So the cities and towns are moving faster, boldly cultivating trees from the dry Southwest into the Pacific Northwest.

This photo from Aitken and Bemmels (2015) shows a series of Sitka spruce, all eight years old, planted together in British Columbia. The trees from the south, adapted for a warmer and drier environment, are out-competing the locals.

Tree migration is also critical for the range expansion of animals. Without the trees and other vegetation, many birds, mammals, and other forms of life have no habitat rungs on the ladder to enable them to move north as well. Anna’s Hummingbirds now winter in Canada and even Alaska, largely due to ornamental plantings. The Oak Titmouse, on the other hand, is dependent on oaks, tightly constraining its ability to expand north. It may be that, in the coming decades, oaks and other tree species planted in cities and towns will provide critical refugia for a wide variety of birds and insects seeking cooler climes.

Becoming Arizona: How climate change is transforming California thru fire

When climatologists predicted that Sacramento would have Phoenix’s weather by 2100, and Portland would have Sacramento’s, they didn’t explain the ecological implications nor the process. Yet it’s apparent that an awful lot of trees need to disappear for the Sierra to look like the rock, grass, and cacti that make up Camelback Mountain in Phoenix.

Camelback Mountain near Phoenix

A new “new normal” every year

This ecological transformation, the likes of which would normally take a thousand years even during a rapid warming event, is happening, driven by rapid climate change. All those trees are flying away in the form of ashes and smoke.

The process, in human and ecological terms, is brutal. Californians experience a new “new normal” each year, each one stunning in its own right. In 2017 we were shocked when 6,000 homes burned in Santa Rosa, killing dozens as people fled in their bathrobes. Despite decades of fires in suburban California, there had never been anything of that magnitude. Before the year was out, the Thomas fire became the largest in state history as it burned thru Christmas and New Year. The next summer, the Carr fire stunned us with an EF-3 firenado that generated 140 mph winds. A few months later, the past was eclipsed when the entire town of Paradise burned, killing 85 people. That may be the largest climate-induced mass mortality event in history.  

2020

After a reprieve in 2019, we arrive at 2020, where acreage burned has exceeded two million and three million for the first time. We keep having to adjust our vertical axes to make room for each new year. Five fires burning at the same time in 2020 qualified for the top 20 largest fires in the history of the state. Three of those, still burning as a write, are first, second, and fourth on the list.

California under smoke, September 9, 2020.

Each year has its macabre highlights. This year, over 300 people were rescued by military helicopters, many at night high in the Sierra. For the first time ever, all 18 national forests were completely closed to the public. The National Weather Service had to create a firenado warning. A dystopian pall of smoke created hazardous air from California to Canada for weeks, forcing people into their homes with all windows shut. And my hometown, Woodland Hills, hit 121 degrees, the highest temperature ever recorded in Los Angeles County.  

In 2019, the media reported that Oregon firefighters make an annual trek to California to provide mutual aid. In 2020, that changed. A quarter of the west slope of the Cascades from Portland to Medford appears to be on fire. One out of eight Oregonians are evacuating. The media is filled with horrific stories of grandmothers and teenagers burned alive while the father asks a badly burned woman along a roadside if he’s seen his wife. “I am your wife,” she responds.

Eugene, Oregon on the morning of September 8, 2020.

The process

We have heard for years that, with longer and hotter summers and declining snowpack, fire season has grown by months. In 2006, Westerling predicted such an increase in fires that the forests of the western US would become net carbon emitters. The US Forest Service now plans for fire year-round.

A series of academic analyses lays out the factors and processes of Arizonification. Decreased summer rains, as well as warmer winter and spring temperatures, are creating dry and stressed trees. But that’s not all. Summers that have become 1.4C (2.5F) warmer have led to an exponential increase in atmospheric vapor pressure deficit (VPD). It’s getting drier and, more importantly, vegetation is getting drier. This leads to big fires. Williams et al (2019) noted, “The ability of dry fuels to promote large fires is nonlinear, which has allowed warming to become increasingly impactful.” The Camp Fire, which destroyed the town of Paradise, occurred during some of the lowest vegetation moisture ever recorded. Add to that hot dry winds and vulnerable PG&E transmission lines, and the Paradise disaster looks predictable.

Northern California, being at western North America’s southern edge of the low elevation temperate forests, is especially at risk. As documented in the Verdugo Mountains near Los Angeles, high fire frequency converts forest and chapparal to weeds and rocks. That southern edge is pushing north. Forests are migrating north; so are deserts. (So are bird populations.)

To summarize, slightly warming temperatures, even in winter and spring, and less summer rain lead to an exponential increase in dry vegetation, which leads to an exponential increase in large fires, which leads a conversion of habitat from forest and chaparral to the grass and rock-dominated landscapes of arid desert mountain ranges. Sacramento becomes Phoenix. The Sierra and Coast Ranges become Camelback Mountain.

The future

Nearly the entire east side of the northern Coast Ranges have burned since 2018. Much of the southern Sierra forests died during the recent drought; most of those have yet to burn.

Arizona State University fire historian Prof. Stephen Pyne calls this a new epoch, the Pyrocene. “The contours of such an epoch,” he writes, “are already becoming visible through the smoke. If you doubt it, just ask California.”

Abatzoglou and Williams (2016) conclude, “anthropogenic climate change has emerged as a driver of increased forest fire activity and should continue to do so while fuels are not limiting.” Williams et al repeat this, “Given the exponential response of California burned area to aridity, the influence of anthropogenic warming on wildfire activity over the next few decades will likely be larger than the observed influence thus far where fuel abundance is not limiting.”

In layman’s terms, it’s going to get worse until there’s nothing left to burn.

The annual area burned in California has increased fivefold from 1972 to 2018 (Williams et al 2019). Several individual fires in 2020 exceed the average from 1987-2005. The point shown here for 2020 is still increasing.

Academic papers

Here is a partial list of recent research on the increase of fires in California and the western US.

Abatzoglou and Williams (2016). Impact of anthropogenic climate change on wildfire across western US forests. PNAS 113 (42) 11770-11775.

Goss et al (2020). Climate change is increasing the likelihood of extreme autumn wildfire conditions across California. Environmental Research Letters 15(9).

Haidinger and Keeley (1993). Role of hire fire frequency in destruction of mixed chaparral. Madrono 40(3): 141-147.

Holden et al (2018). Decreasing fire season precipitation increased recent western US forest wildfire activity. PNAS 115 (36) E8349-E8357.

Kitzberger et al (2017). Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America. PLOS One.

Lareau et al (2018). The Carr Fire Vortex: A Case of Pyrotornadogenesis? Geophysical Research Letters 45(23).

Seager et al (2014). Climatology, variability and trends in United States 2 vapor pressure deficit, an important fire-related 3 meteorological quantity.

Swain (2020). Increasingly extreme autumn wildfire conditions in California due to climate change. Weather West Blog (related to Goss et al 2020 above).

Syphard et al (2019). The relative influence of climate and housing development on current and projected future fire patterns and structure loss across three California landscapes. Global Environmental Change 56: 41-55.

Williams et al (2019). Observed Impacts of Anthropogenic Climate Change on Wildfire in California. Earth’s Future 7(8): 892-910

Westerling et al (2006). Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity. Science 313(5789): 940-943.

The invasion of the Pacific Northwest: California’s birds expand north with warmer winters

Birds, because of their mobility, are considered to be fairly adaptable to climate change. They evolved in the aftermath of two of the world’s most catastrophic warming events (the K-T extinction and the Paleocene-Eocene Thermal Maximum), spreading to the Arctic, crossing continents, and evolving along the way. While those warming events took place over tens of thousands of years, the current warming is happening in the space of a couple hundred, with noticeable changes in climate within the lifespan of a single bird.

There will be winners and losers. Generalists, and species that enjoy warmer weather, are likely to be winners. Those with narrow food or habitat requirements, especially those dependent on the ocean or the Arctic/Antarctic, will likely be losers. Although counter-intuitive, it is primarily non-migratory resident species that seem to be more adaptable to a changing climate.

Recent studies

Studies of climate impacts on western North American birds using past data are limited, but some focusing on California were recently published. Iknayan and Beissinger (2018) showed that, over the last 50 years, “bird communities in the Mojave Desert have collapsed to a new, lower baseline” due to climate change, with significant declines in 39 species. Only Common Raven has increased. Furnas (2020) examined data from northern California’s mountains, showing that some species have shifted their breeding areas upslope in recent years. Hampton (myself) (2020) showed increases in many insectivores, both residents and migrants (from House Wrens to Western Tanagers), in winter in part of the Sacramento Valley over the last 45 years. These changes, particularly range shifting north and out of Southwest deserts, is predicted for a wide number of species.

The invasion of the Pacific Northwest

Here I use Christmas Bird Count (CBC) data to illustrate that some of California’s most common resident birds have expanded their ranges hundreds of miles north into Oregon, Washington, and British Columbia in recent years. The increases are dramatic, highly correlated with each other across a wide range of species, and coincide with rapid climate change. They illustrate the ability of some species to respond in real time.

In parts of Oregon and Washington, it is now not unusual to encounter Great Egret, Turkey Vulture, Red-shouldered Hawk, Anna’s Hummingbird, Black Phoebe, and California Scrub-Jay on a single morning—in winter. A few decades ago, this would have been unimaginable. Some short-distance migrants, such as Townsend’s Warbler, are also spending the winter in the Pacific Northwest in larger numbers.

The following graphs, showing the total number of individuals of each species seen on all CBCs in Oregon, Washington, British Columbia, and (in one case) Alaska, illustrate the range expansions. Adjusting for party hours scarcely changes the graphs; thus, actual numbers of individuals are shown to better illustrate the degree of change. The graphs are accompanied by maps showing predicted range expansions by the National Audubon Society, and recent winter observations (Dec-Feb) from eBird for 2015-2020.

These range expansions were predicted, though in some cases the recent trends exceed even projected scenarios under 3.0C increases in temperature.

Let’s begin with the climate. Canada as a whole has experienced 3.0C in temperature increases in winter. British Columbia has experienced an average of 3.7C increase in Dec-Feb temperatures since 1948. The greatest increases have been in the far north; increases in southern British Columbia, Washington and Oregon have been closer to 1.5C.

winter temps in Canada.jpg

Average nationwide winter temperatures deviation from average.

Great Egret

Great Egrets on Oregon CBCs have increased from near zero to nearly 900 on the 119th count (December 2018 – January 2019).

CLICK ON GRAPHS TO ENLARGE

GREG OR graph.jpg

But their expansion, which took off in the early 1990s into Oregon, is now continuing in Washington, with a significant rise beginning in the mid-2000s. Great Egrets occur regularly in southern British Columbia, but so far have eluded all CBCs.

GREG WA graph.jpg

They have not quite fulfilled the full range predicted for a 1.5C increase, but are quickly on their way there.

GREG maps.jpg

Turkey Vulture

Turkey Vultures began increasing dramatically in winter in the Sacramento Valley of California in the mid-1980s, correlated with warmer winters and a decrease in fog. Prior to that, they were absent. Now, over 300 are counted on some CBCs. That pattern has been repeated in the Pacific Northwest, though about 20 years later. Both Oregon and British Columbia can now expect 100 Turkey Vultures on their CBCs. Curiously, Puget Sound is apparently still too cloudy for them, who prefer clear skies for soaring, though small numbers are regular in winter on the Columbia Plateau.

TUVU CBC graph.jpg

TUVU maps.jpg

Red-shouldered Hawk

Red-shouldered Hawks have increased from zero to over 250 inviduals on Oregon CBCs, taking off in the mid-1990s.

RSHA OR graph.jpgTwenty years later, they began their surge into Washington. It’s a matter of time before the first one is recorded on a British Columbia CBC.

RSHA WA graph.jpg

While their expansion in western Washington is less than predicted, their expansion on the east slope, in both Oregon and Washington, is greater than predicted. This latter unanticipated expansion into the drier, colder regions of the Columbia Plateau is occurring with several species.

RSHA maps.jpg

Anna’s Hummingbird

If this invasion has a poster child, it’s the Anna’s Hummingbird, which, in the last 20 years, have become a common feature of the winter birdlife of the Pacific Northwest. Their numbers are still increasing. While much has been written about their affiliation to human habitation with hummingbird feeders and flowering ornamentals, the timing of their expansion is consistent with climate change and shows no sign of abating. Anna’s Hummingbirds are not expanding similarly in the southern portions of their range. The sudden rate of expansion, which is evidenced in most of the species shown here, exceeds the temperature increases, suggesting thresholds are being crossed and new opportunities rapidly filled.

ANHU CBC graph.jpg

The expansion of the Anna’s Hummingbird has now reached Alaska, where they can be found reliably in winter in ever-increasing numbers.

ANHU AK graph.jpg

The range expansion of the Anna’s Hummingbird has vastly outpaced even predictions under 3.0C. In addition to extensive inland spread into central Oregon and eastern Washington, they now occur across the Gulf of Alaska to Kodiak Island in winter.

ANHU maps.jpg

Black Phoebe 

Non-migratory insectivores seem to be among the most prevalent species pushing north with warmer winters. The Black Phoebe fits that description perfectly. Oregon has seen an increase from zero to over 500 individuals on their CBCs.

BLPH OR graph.jpg

With the same 20-year lag of the Red-shouldered Hawk, the Black Phoebe began its invasion of Washington.

BLPH WA graph.jpg

The figure below illustrates two different climate change predictions, using 1.5C and 3.0C warming scenarios. While nearly a third of the Pacific Northwest’s Black Phoebes are in a few locations in southwest Oregon, they are increasingly populating the areas predicted under the 3.0C scenario.

BLPH maps.jpg

Townsend’s Warbler

Migrant species tend not to show the dramatic range expansions of more resident species – and short-distance migrants show more range changes than do long-distance migrants. Townsend’s Warblers, which winter in large numbers in southern Mexico and Central America, also winter along the California coast. Increasingly, they are over-wintering in Oregon and, to a lesser degree, Washington. This mirrors evidence from northern California, where House Wren, Cassin’s Vireo, and Western Tanager are over-wintering in increasing numbers. These may be next for Oregon.

TOWA WA OR graph.jpg

Townsend’s Warblers are already filling much of the map under the 1.5C warming scenario, though their numbers on CBCs in Washington and British Columbia have yet to take off.

TOWA maps.jpg

California Scrub-Jay

Due to problems with CBC data-availability, I have no graph for the California Scrub-Jay. Their northward expansion is similar to many of the species above. Their numbers on Washington CBCs have increased from less than 100 in 1998 to 1,125 on the 2018-19 count. eBird data shows they have filled the range predicted under the 3.0C scenario and then some, expanding into eastern Oregon, the Columbia Plateau, and even Idaho.

CASJ maps.jpg

Other species

Other species which can be expected to follow these trends include Northern Mockingbird and Lesser Goldfinch. (See more on the expansion of the Lesser Goldfinch here.) White-tailed Kite showed a marked increased in the mid-1990s before retracting, which seems to be part of a range-wide decline in the past two decades, perhaps related to other factors.

Curiously, three of the Northwest’s most common resident insectivores, Hutton’s Vireo, Bushtit, and Bewick’s Wren, already established in much of the range shown on the maps above, show little sign of northward expansion or increase within these ranges. The wren is moving up the Okanogan River, and the vireo just began making forays onto the Columbia Plateau. Both of these expansions are predicted.

Likewise, some of California’s oak-dependent species, which would otherwise meet the criteria of resident insectivores (e.g. Oak Titmouse), show little sign of expansion. Oaks are slow-growing trees, which probably limits their ability to move north quickly. Similarly, the Wrentit remains constrained by a barrier it cannot cross—the Columbia River.

Call it the invasion of the Northwest. Call it Californication. Call it climate change or global warming. Regardless, the birds of California are moving north, as predicted and, in some cases, more dramatically than predicted.

ANHU CBC graph.jpg