Honorific bird names facts and figures

Here is a closer look at the eponymous (mostly honorific) names for the most familiar species in North America.

At the American Ornithological Society (AOS) Congress on English Bird Names on April 16, 2021, a host of prominent organizations and individuals endorsed “bird names for birds”, a widespread effort to rename eponymous or honorific species names with more descriptive names, focusing on their physical or ecological attributes.

This Analysis: 80 familiar species

Scott’s Oriole was named after two brothers and then, later, the Commanding General of the US Army.

Looking at Version 8.0.8 (March 12, 2021) of the ABA Checklist, 116 of the 1,123 species, or a little over 10%, are named after people. Of the 116 in the ABA area, two (Bishop’s Oo and Bachman’s Warbler) are considered extinct, one is an introduced species in Hawaii (Erckel’s Francolin), and 32 others are Codes 3, 4 or 5, meaning they occur rarely in the ABA area. The remaining 80 are all Code 1 or 2 and can be expected to be seen in the ABA area regularly. The following analyses focuses on these 80 familiar species.

The Birds

The first thing to note is that these 80 species come from a wide array of families and species groupings. As with all birds, Passerines are dominant, making up 49% of the list. Digging deeper, seabirds and Passerines with limited ranges (mostly warblers and sparrows) are over-represented—because they were described relatively late in the European discovery process, when honorific naming became more in vogue.

Naming Patterns

The AOU (American Ornithological Union, the precursor to the AOS) began proposing English names in its first checklist in 1886, but didn’t complete the effort – and the names were not universally accepted – until the 5th edition in 1957. Meanwhile, the Latin scientific names have always followed a clear rule: the Latin name is set by the first published description of a species. The “bird names for birds” movement is focused on English names only.

Eponymous naming was rare in the 18th century, limited to just four of the 80 species, all emanating from Russian/German and British field work, primarily focused on the far north. The four early birds are Steller’s Eider (1769), Blackburnian Warbler (1776), Steller’s Jay (1788), and Barrow’s Goldeneye (1789).

Then, in 1811, Alexander Wilson named a woodpecker and a nutcracker after Lewis and Clark, and honorific naming was off and running, peaking in the mid-1800s.

Eponyms for the 80 Code 1 and Code 2 species are overwhelmingly honorific. Only six are named after the describer himself (Wilson’s Warbler, Sabine’s Gull, Brandt’s Cormorant, Townsend’s Warbler, Gambel’s Quail, and Cory’s Shearwater), and it’s not clear that even all of them intended for the species to have an eponym; the Latin names for the warbler, cormorant, and shearwater suggest otherwise. Wilson himself called his warbler the Green Black-capped Flycatcher and the western subspecies went by Pileolated Warbler (coined by Pallas) as late as the 1950s.

The namers were widespread – 36 different people provided the 80 names, though four stand out. John James Audubon provided fifteen of the eponymous names, Spencer Baird and John Cassin each provided seven, and Rene Lesson four. Together, these four ornithologists were responsible for 41% (33/80) of the honorific names in this analysis. In addition, many eponymous subspecies were coined by Baird.


Locations on the diagram only loosely correspond to the time axis due to space constraints.

The majority of the namers were connected to each other, with many naming birds after colleagues, who in turn named species after other colleagues. Lesson described Audubon’s Shearwater and Oriole; Audubon described Baird’s Sparrow; Baird described Woodhouse’s Scrub-Jay; Woodhouse described Cassin’s Sparrow; Cassin described Lawrence’s Goldfinch; Lawrence described LeConte’s Thrasher.

There are no examples of a quid pro quo, where two people named birds after each other, unless you count Audubon’s Warbler, described by Townsend in 1837; Audubon returned the favor with Townsend’s Solitaire the following year. Or Coues, who christened a sandpiper after Baird in 1861; four years later, Baird named a warbler after Coues’ sister, Grace.

Despite Audubon’s dominant role in honorific naming, no Americans honored him (excepting Townsend with Audubon’s Warbler); only Lesson, a Frenchman, did.

A third of the species (27 of 80) have Latin names that do not match the honorific English name. In most instances this is because the bird was accidentally described twice. Most often, they were not originally intended to have an honorific name. A person described the species and gave a descriptive Latin name, then later another person described the same species and gave an honorific name. For example, Lichtenstein described A. aestivalis in 1823, then Audubon described it again in 1839, naming it Bachman’s Sparrow. When it was realized the two were the same species, the Latin name provided by the first publication held, but, at least in these instances, the honorific English name was also given—a kind of consolation prize to the second describer. Thus, what was called Pinewoods or Oakwoods Sparrow became Bachman’s Sparrow.

Among the 80 species in this analysis, this double-describing happened at least 18 times. Curiously, six of these were by Audubon and account for 40% of his honorific bestowments. These are Harris’s Hawk, Bachman’s Sparrow, MacGillivray’s Warbler, Harris’s Sparrow, Brewer’s Blackbird, and Smith’s Longspur. MacGillivray’s Warbler was intended to be Tolmie’s Warbler as described by Townsend; the other five have descriptive Latin names. There is one other double-described species that has a Latin honorific—Scott’s Oriole, Icterus parisorum, originally named after the Paris brothers. Most of the others have descriptive Latin names.

Cassin’s Auklet (P. aleutica) and Cassin’s Kingbird (T. vociferans) were first described, respectively, before Cassin was born and when Cassin was just thirteen. Clearly the original describers did not intend to honor Cassin. However, by the 1886 AOU checklist both carried the Cassin moniker, though there is no record that I could find how or why that came to be (and even a co-author of the auklet’s Birds of North American species account didn’t know the answer).

Interestingly, two species have Latin names derived from indigenous words: pipixcan of Franklin’s Gull is Nahuatl for the gull or possibly the Aztec region in Mexico; sasin of Allen’s Hummingbird is Noo-chah-nulth (Nootka) for hummingbird, a reference to when the species was lumped with Rufous Hummingbird. The gull was described twice, which is how it ended up honoring Franklin. The hummingbird was split, providing an opportunity for another name. Ironically, Allen’s, not Rufous, Hummingbird always bore the Noo-chah-nulth name which emanates from Vancouver Island.

Correlated with the timing, a clear regional pattern emerges. Because the common eastern species had already been described a century earlier, western species with honorific names outnumber eastern ones nearly ten to one. A map plotting the year of description with the core of the species’ range mimics European expansion – and ethnic cleansing of Native Americans – across the continent in the nineteenth century.

The Honorees

As for the honorees, most were naturalists, either doing field work or promoting it (70 of 80), most were Americans (55 of 80) or at least had spent some time in North America (add ten more). French collectors dominated the hummingbirds.

Only six species honor women—or girls. Blackburne is the early outlier, a British naturalist honored by one of the German ornithologists in the late 1700s. Neither spent time in North America; the type specimen comes from South America. Curiously, the eponymic title is not in the possessive form (e.g. Blackburne’s Warbler). For reasons unknown to me, the Latin name was changed from blackburniae to fusca before 1910.

During the surge of honorifics in the mid-1800s, the only females honored were friends or family, and they only got first names. Anna, age 27 when the hummingbird was named in her honor, was the wife of an ornithologist and a lady-in-waiting in the court of Emperor Napoleon III’s wife. She was described by Audubon as a “beautiful young woman, not more than twenty, extremely graceful and polite.” Virginia was the wife of William Anderson, the original collector; she was honored by Baird at Anderson’s request. Grace, also honored by Baird, was Elliot Coues’s sister. Lucy, age 13, honored by James G. Cooper, was Baird’s daughter.

We don’t return to female scientists – and last names – until the 1900s, with Scripps, who was honored in 1939, and her bird didn’t reach species status until 2012.

Most of the honorees have no obvious indications of a checkered past (66 of 80), though most of these were quite comfortable associating with, or honoring with bird names, those who were slaveholders, white supremacists, or actively involved in killing or removing Native Americans, even while these actions were hotly debated and contested at the time among whites—and universally opposed by Blacks and Native Americans. As early as 1920, the entire concept of eponymous bird names was challenged.


Locations are intended to approximate the location of the species’ range or location of type specimen.

The dominance of western species among honorific names with morally objectionable pasts is no accident. Many of the ornithologists working in the West were attached to US military expeditions or other surveys of colonization, such as railroad surveys or the border survey after the Mexican-American War. They often served as doctors while doing naturalist work on the side. Many were likely looking for a vehicle to get into the field.

Others were active combatants, with the naturalist work coming on the side. William Clark, after the famous 1803 expedition, played a leadership role in the ethnic cleansing of Native Americans for three decades. Abert served as a soldier under John Fremont’s Third Expedition and likely participated in the Sacramento River massacre of Wintu families, deemed horrific by their contemporaries. General Winfield Scott, not a naturalist in any way, was honored by Couch with an oriole precisely for his role as the Commanding General of the US Army, which included overseeing the arrest, detainment, and expulsion of the Cherokee during the Trail of Tears.

But why did they turn to honorific naming when their predecessors did not? Was it the spirit of conquest, of erasing the former occupants of the land, that gave them the presumption and bravado to name even the birds after each other? After all, mountains, rivers, valleys, and large regions of land were all being re-named and claimed as European.

White supremacy permeated the sciences. Crania Americana was published between 1839 and 1849 by Samuel Morton, a colleague of several of the naturalists. Townsend collected skulls for him. During the same era, to support the Indian Removal Act and other similar policies, the Mound Builder Myth, asserting that Native Americans were not actually native, but that North America was originally populated by Europeans, was widely taught in grade schools across the land. The land was originally European, so the story went. This theory was eventually laid to rest thanks to the efforts of John Wesley Powell, but only after most Natives were detained in concentration camps.

In short, the scientific fields were permeated with white supremacy and a sense of white ownership. Ornithological research found itself interlocked with US military endeavors and, on the Western frontier, far from Eastern progressive voices advocating abolition and respect for slaves and Natives. In this climate, honorific naming eventually ran amok, often foundering on the rocky shores of slavery and ethnic cleansing, aka manifest destiny.

It would be wrong to assume that “everyone was doing it.” In 1822, Thomas Say, honored by Charles Bonaparte with the phoebe, described Long-billed Dowitcher, Band-tailed Pigeon, Dusky Grouse, Western Kingbird, Rock Wren, Lark Sparrow, Lesser Goldfinch, Lazuli Bunting, and Orange-crowned Warbler, giving all of them descriptive names.

Caveat: Researching the origins of species’ names is challenging, especially for those described more than once or subject to taxonomic revisions. Corrections from knowledgeable readers are much appreciated. Regardless of errors, the larger picture, the trends regarding time and place, still hold.

Note: Updated June 2, 2021 to include Blackburnian Warbler.

I’ve added some thoughts addressing the question: Should we hold people in the past accountable to present-day mores?

As a citizen of Cherokee Nation, here is my personal connection to Scott’s Oriole.

Goodbye California: Reminiscences of a climate refugee

There are a lot of reasons why I’m moving from California to Washington, including family and other personal considerations. But one reason, one big reason, is California’s rapidly changing climate.

It was late February in the Coast Range of northern California when I was wearing shorts and a t-shirt. Dust swirled around my car in the dirt parking lot at Cold Canyon. The car thermometer, warmed by a sun that felt imported from Palm Springs, said 87 degrees; it was actually only 77. A hint of ash, omnipresent since The Fire last summer, remained in the air.

Its oaks torched with little hope of return, Putah Creek Canyon is quickly resembling a sun-scorched canyon in Arizona. Until 2018, only one fire in the area had burned more than 15 square miles. Then the County Fire burned 140 square miles. In 2020, the LNU Complex Fire burned 570 square miles.

The hillsides were green with the new growth of non-native grass, which was responding to a recent heavy rain. That was deceptive. More than half the rain we’d had in the previous eight months came in that single event. We had six inches of rain in all of 2020. Looking beyond the grass, nearly every tree – blue oaks and gray pines – on the hillsides was dead, burnt black and orange monuments to a previous era. For our local blue oak woodland, that era ended last year and, given that recruitment of saplings is unlikely due to heat, fire, and cattle, it was an era that will never return.

Massive die-offs are eliminating blue oaks from the southern third of their range. Black oaks are marching up the Sierra, displacing Ponderosa pine, which are marching up, displacing firs. Everyone is on the move. Oak woodlands are becoming oak savannahs, oak savannahs are becoming grasslands, grasslands are becoming rocky high deserts. Arizonification is happening quickly, thru heat, drought, and ultimately, thru fire.

Virtually all of the east slopes of the Coast Range between San Francisco Bay and the Trinity Alps has burned in the past ten years. In the Sierra, one can practically predict where the next fire catastrophe will happen, because it hasn’t burned yet (hint: Lake Almanor, Placerville, Arnold).

The Fire, the LNU Complex Fire, was part of 2020’s 4.3 million acres of scorched earth. The LNU Fire exceeded the total acreage of all previous fires that impacted my county over the last 50 years combined.

It was a beautiful day—for April. But February has become April, April has become May, and June, July, August, September, and even October and November have become unrecognizable. Every year more heat records are broken. Hottest summer, hottest month, most days over 100, most days over 90. The list goes on, each year breaking the records set the previous year. Weather data is normally highly variable; now it is a straight line—warmer and warmer. And smokier.

My cape honeysuckle and bougainvillea, both planted with a degree of optimism outside their recommended zone, used to die back so badly in the winter that each spring I was tempted to declare them dead and pull them out. Now they bloom year-round, looking like they’re in a courtyard at a hotel in the tropics. We haven’t had a real freeze in seven winters.

The songs of lesser goldfinches on my street are a depressing warning. I can’t take two steps outside without seeing or hearing a bird that reminds me that our climate has seriously changed. Western tanagers, house wrens, and turkey vultures are regular in winter now. The lesser goldfinches have come out of the arid hills and are quickly becoming one of the most ubiquitous nesting birds in Davis. (I know this definitively because one included an imitation of a canyon wren in its song.) What’s more, at least four Say’s phoebes, essentially a high desert species, are scouting for nests in town now. A fifth arrived on my block last week, singing as if on territory. They’ve been doing this for a few years and their numbers are growing.

The graphs of acres burned in California (and in other western states) and the expansion of some bird species into the Pacific Northwest (in this case, Anna’s hummingbirds in winter), are strikingly similar.

I’m leaving. I’ve lived in California fifty-five years but it’s no longer the state I grew up in.

We’re headed to the Olympic Peninsula in Washington. We are fortunate to be able to do so.

Besides the cooler summers, one of the best things about moving to a new place is that I won’t be reminded of climate change on a daily experiential basis. Because the ecosystem will be new to me, I won’t know what’s different, what is changing, except maybe for the brown boobies, a tropical seabird, that are now showing up in Puget Sound each year. Or the family of California scrub-jays that have just established residence on my new street. Like Anna’s hummingbirds, black phoebes, great egrets, red-shouldered hawks, and people like me, scrub-jays are moving north. I expect more of California’s birds to follow me, just as I follow some of them. Yes, lesser goldfinches are coming north too; they’re already established southeast of Tacoma.

I feel like a frog in a boiling pot. I’m getting out. I’m saying goodbye to California, but I feel it has left all of us without saying goodbye to anyone.

The view from Point Wilson, a mile from my new home in Port Townsend, which has had only a few nights below freezing all winter. Climate change is occurring there too, but remains well within temperate ranges.

I do believe that Homo sapiens may ultimately win the climate battle and bring atmospheric CO2 back down to 300 ppm or something. But that’s a hundred years off. And there’s no guarantee we can stop the tide of Greenland and Antarctic ice melt to prevent sea level rise. In the meantime, in the next 50 to 100 years, it’s going to get a lot warmer. And we may ultimately lose New York City, Singapore, Mumbai, and every other low-lying coastal city. My new home is fifty feet above sea level. Well, probably forty-nine and a half now.

Mojave Desert bird populations plummet due to climate change

Two recent papers concluded that many breeding bird species in southern California and Nevada deserts have declined dramatically due to climate change.

In their abstract, Iknayan and Beissinger (2018) summarized, “We evaluated how desert birds have responded to climate and habitat change by resurveying historic sites throughout the Mojave Desert that were originally surveyed for avian diversity during the early 20th century by Joseph Grinnell and colleagues. We found strong evidence of an avian community in collapse.”

They re-surveyed 61 sites originally surveyed by Grinnell teams in the early 20th century (primarily between 1917 and 1947).

Of 135 species assessed (which included some wintering and migrating species, as well as breeding species), 39 had significantly declined; only one (Common Raven) had increased. This was in stark contrast to similar assessments they conducted of Sierra and Central Valley sites, where more species had increased than decreased and there were no overall declines (not to say there weren’t winners, losers, and range shifts within those regions).

Figure 1B from Iknayan and Beissinger (2018). Every study site had fewer species than previously– on average each site had lost 43% of their species.

Detailed analyses suggested less rainfall and less access to water was the primary driver. Habitat change only affected 15% of the study sites and was of secondary importance. They found no evidence of expansion of species from the hotter, drier Sonoran Desert (e.g. Phainopepla, Verdin, Black-throated Sparrow) into the Mojave Desert.

Consistent with a community collapse, declines were greatest among species at the top of food chain — carnivores such as Prairie Falcon, American Kestrel, and Turkey Vulture. Insectivores were the next most impacted, and herbivores the least. But the declines affected both common and rare species, both generalists and specialists.

Figure 1B from Iknayan and Beissinger (2018), which I’ve augmented with species labels from the database available in the supplementary materials. Other significant losers (red dots), in order of degree of decline, included Western Kingbird, Western Meadowlark, Black-chinned Sparrow, Lawrence’s Goldfinch, Bushtit, Ladder-backed Woodpecker, and Canyon Wren. The yellow dots are newly invasive species: Chukar, Eurasian Collared-Dove, Eurasian Starling, and Great-tailed Grackle.

A follow-up study by Riddell et al (2020), also involving Iknayan and Beissinger, focused on the thermoregulatory costs — the water requirements to keep cool — for the declining species. They found that “species’ declines were positively associated with climate-driven increases in water requirements for evaporative cooling and exacerbated by large body size, especially for species with animal-based diets.” Larger species get much of their water from the insects they eat. They estimated larger species would have to double or triple their insect intake to meet their water needs, though insect abundance is lowest July thru September.

American Kestrels were among the biggest losers in the study, struggling to meet their cooling needs.

Intriguingly, they found that 22 species had actually declined in body size over the last century, consistent with Bergmann’s Rule, and had reduced their cooling costs up to 14%. These species fared better. Current climate change, however, is at least ten times more rapid than any previous warming event, during which many species evolved. They estimated cooling costs have already increased 19% and will reach 50% to 78% under most scenarios, far outstripping any species’ ability to evolve through the current rapid warming.

These results stand in stark contrast to the Pacific Northwest, where many of the same bird species (e.g. Anna’s Hummingbird, Turkey Vulture, Northern Mockingbird) are increasing. This is consistent with projections which generally show individual declines along species’ southern edge and expansions at the north edge of their range (see Audubon climate projection maps for individual species).

Iknayan and Beissinger conclude, “Our results provide evidence that bird communities in the Mojave Desert have collapsed to a new, lower baseline. Declines could accelerate with future climate change, as this region is predicted to become drier and hotter by the end of the century.”

Keep Davis Water Treatment Ponds wild

The ponds at the Davis Wastewater Treatment Plant have been one of the top birding spots in Yolo County for over 50 years. With 212 species reported via eBird, only two other sites in the county have recorded more (Yolo Bypass Wildlife Area and Davis Wetlands).

Here’s a short video clip from October 2020 illustrating the amazing bird life. A family of Sandhill Cranes walks among thousands of geese, ducks, and shorebirds while the calls of curlews filled the air. A Peregrine Falcon and a Northern Harrier buzzed past. Though the ponds are no longer part of the water treatment plant operations, they still collect rain water and provide habitat. Over 14,000 ducks have been counted on them during the annual Christmas Bird Count. The list of rarities includes everything from Slaty-backed Gull and Arctic Tern to Vermillion Flycatcher.

Earlier this year, the Davis City Council voted 4-1 to lease these ponds to BrightNight solar to convert these ponds into a solar array. Aside from the obvious risk of bird mortality from panel strikes, the project would eliminate one of the best bird habitats in the county. The City Council’s decision has been criticized for its impact on wildlife, for the improper process bypassing the Natural Resources Commission, and for its poor financial terms (the city got ripped off). Gloria Partida, Dan Carson, Will Arnold, and Brett Lee approved it. Only Lucas Frerichs voted against the deal.

But it’s not too late to try to stop it. Here’s what you can do:

1. Call or email each City Council member and ask them to rescind their original vote. Their phone numbers are available here. We need three of them to overturn the original decision. Will Arnold has expressed regret for his vote and Gloria Partida was skeptical at the outset. We also may have an opportunity after the election with new Council member to overturn this decision.

  • Gloria Partida — gpartida@cityofdavis.org
  • Will Arnold — warnold@cityofdavis.org
  • Dan Carson — dcarson@cityofdavis.org
  • Brett Lee — blee@cityofdavis.org
  • Lucas Frerichs — lucasf@cityofdavis.org

2. Call or email Valley Clean Energy Alliance board members and ask them to reject the bid from BrightNight for a new power contract. Their emails are here:

  • Angel Barajas — angel.barajas@cityofwoodland.org
  • Dan Carson — dcarson@cityofdavis.org
  • Lucas Frerichs — lucasf@cityofdavis.org
  • Gary Sandy, Vice Chair — gary.sandy@yolocounty.org
  • Don Saylor — don.saylor@yolocounty.org
  • Tom Stallard, Chair — tom.stallard@cityofwoodland.org
  • Duane Chamberlain, alternate — duane.chamberlain@yolocounty.org
  • Xochitl Rodriguez, alternate — xochitl.rodriguez@cityofwoodland.org

3. Join the effort to increase transparency in City government that would have prevented this travesty. You can see more on that here.

The invasion of the Pacific Northwest: California’s birds expand north with warmer winters

Birds, because of their mobility, are considered to be fairly adaptable to climate change. They evolved in the aftermath of two of the world’s most catastrophic warming events (the K-T extinction and the Paleocene-Eocene Thermal Maximum), spreading to the Arctic, crossing continents, and evolving along the way. While those warming events took place over tens of thousands of years, the current warming is happening in the space of a couple hundred, with noticeable changes in climate within the lifespan of a single bird.

There will be winners and losers. Generalists, and species that enjoy warmer weather, are likely to be winners. Those with narrow food or habitat requirements, especially those dependent on the ocean or the Arctic/Antarctic, will likely be losers. Although counter-intuitive, it is primarily non-migratory resident species that seem to be more adaptable to a changing climate.

Recent studies

Studies of climate impacts on western North American birds using past data are limited, but some focusing on California were recently published. Iknayan and Beissinger (2018) showed that, over the last 50 years, “bird communities in the Mojave Desert have collapsed to a new, lower baseline” due to climate change, with significant declines in 39 species. Only Common Raven has increased. Furnas (2020) examined data from northern California’s mountains, showing that some species have shifted their breeding areas upslope in recent years. Hampton (myself) (2020) showed increases in many insectivores, both residents and migrants (from House Wrens to Western Tanagers), in winter in part of the Sacramento Valley over the last 45 years. These changes, particularly range shifting north and out of Southwest deserts, is predicted for a wide number of species.

The invasion of the Pacific Northwest

Here I use Christmas Bird Count (CBC) data to illustrate that some of California’s most common resident birds have expanded their ranges hundreds of miles north into Oregon, Washington, and British Columbia in recent years. The increases are dramatic, highly correlated with each other across a wide range of species, and coincide with rapid climate change. They illustrate the ability of some species to respond in real time.

In parts of Oregon and Washington, it is now not unusual to encounter Great Egret, Turkey Vulture, Red-shouldered Hawk, Anna’s Hummingbird, Black Phoebe, and California Scrub-Jay on a single morning—in winter. A few decades ago, this would have been unimaginable. Some short-distance migrants, such as Townsend’s Warbler, are also spending the winter in the Pacific Northwest in larger numbers.

The following graphs, showing the total number of individuals of each species seen on all CBCs in Oregon, Washington, British Columbia, and (in one case) Alaska, illustrate the range expansions. Adjusting for party hours scarcely changes the graphs; thus, actual numbers of individuals are shown to better illustrate the degree of change. The graphs are accompanied by maps showing predicted range expansions by the National Audubon Society, and recent winter observations (Dec-Feb) from eBird for 2015-2020.

These range expansions were predicted, though in some cases the recent trends exceed even projected scenarios under 3.0C increases in temperature.

Let’s begin with the climate. Canada as a whole has experienced 3.0C in temperature increases in winter. British Columbia has experienced an average of 3.7C increase in Dec-Feb temperatures since 1948. The greatest increases have been in the far north; increases in southern British Columbia, Washington and Oregon have been closer to 1.5C.

winter temps in Canada.jpg

Average nationwide winter temperatures deviation from average.

Great Egret

Great Egrets on Oregon CBCs have increased from near zero to nearly 900 on the 119th count (December 2018 – January 2019).


GREG OR graph.jpg

But their expansion, which took off in the early 1990s into Oregon, is now continuing in Washington, with a significant rise beginning in the mid-2000s. Great Egrets occur regularly in southern British Columbia, but so far have eluded all CBCs.

GREG WA graph.jpg

They have not quite fulfilled the full range predicted for a 1.5C increase, but are quickly on their way there.

GREG maps.jpg

Turkey Vulture

Turkey Vultures began increasing dramatically in winter in the Sacramento Valley of California in the mid-1980s, correlated with warmer winters and a decrease in fog. Prior to that, they were absent. Now, over 300 are counted on some CBCs. That pattern has been repeated in the Pacific Northwest, though about 20 years later. Both Oregon and British Columbia can now expect 100 Turkey Vultures on their CBCs. Curiously, Puget Sound is apparently still too cloudy for them, who prefer clear skies for soaring, though small numbers are regular in winter on the Columbia Plateau.

TUVU CBC graph.jpg

TUVU maps.jpg

Red-shouldered Hawk

Red-shouldered Hawks have increased from zero to over 250 inviduals on Oregon CBCs, taking off in the mid-1990s.

RSHA OR graph.jpgTwenty years later, they began their surge into Washington. It’s a matter of time before the first one is recorded on a British Columbia CBC.

RSHA WA graph.jpg

While their expansion in western Washington is less than predicted, their expansion on the east slope, in both Oregon and Washington, is greater than predicted. This latter unanticipated expansion into the drier, colder regions of the Columbia Plateau is occurring with several species.

RSHA maps.jpg

Anna’s Hummingbird

If this invasion has a poster child, it’s the Anna’s Hummingbird, which, in the last 20 years, have become a common feature of the winter birdlife of the Pacific Northwest. Their numbers are still increasing. While much has been written about their affiliation to human habitation with hummingbird feeders and flowering ornamentals, the timing of their expansion is consistent with climate change and shows no sign of abating. Anna’s Hummingbirds are not expanding similarly in the southern portions of their range. The sudden rate of expansion, which is evidenced in most of the species shown here, exceeds the temperature increases, suggesting thresholds are being crossed and new opportunities rapidly filled.

ANHU CBC graph.jpg

The expansion of the Anna’s Hummingbird has now reached Alaska, where they can be found reliably in winter in ever-increasing numbers.

ANHU AK graph.jpg

The range expansion of the Anna’s Hummingbird has vastly outpaced even predictions under 3.0C. In addition to extensive inland spread into central Oregon and eastern Washington, they now occur across the Gulf of Alaska to Kodiak Island in winter.

ANHU maps.jpg

Black Phoebe 

Non-migratory insectivores seem to be among the most prevalent species pushing north with warmer winters. The Black Phoebe fits that description perfectly. Oregon has seen an increase from zero to over 500 individuals on their CBCs.

BLPH OR graph.jpg

With the same 20-year lag of the Red-shouldered Hawk, the Black Phoebe began its invasion of Washington.

BLPH WA graph.jpg

The figure below illustrates two different climate change predictions, using 1.5C and 3.0C warming scenarios. While nearly a third of the Pacific Northwest’s Black Phoebes are in a few locations in southwest Oregon, they are increasingly populating the areas predicted under the 3.0C scenario.

BLPH maps.jpg

Townsend’s Warbler

Migrant species tend not to show the dramatic range expansions of more resident species – and short-distance migrants show more range changes than do long-distance migrants. Townsend’s Warblers, which winter in large numbers in southern Mexico and Central America, also winter along the California coast. Increasingly, they are over-wintering in Oregon and, to a lesser degree, Washington. This mirrors evidence from northern California, where House Wren, Cassin’s Vireo, and Western Tanager are over-wintering in increasing numbers. These may be next for Oregon.

TOWA WA OR graph.jpg

Townsend’s Warblers are already filling much of the map under the 1.5C warming scenario, though their numbers on CBCs in Washington and British Columbia have yet to take off.

TOWA maps.jpg

California Scrub-Jay

Due to problems with CBC data-availability, I have no graph for the California Scrub-Jay. Their northward expansion is similar to many of the species above. Their numbers on Washington CBCs have increased from less than 100 in 1998 to 1,125 on the 2018-19 count. eBird data shows they have filled the range predicted under the 3.0C scenario and then some, expanding into eastern Oregon, the Columbia Plateau, and even Idaho.

CASJ maps.jpg

Other species

Other species which can be expected to follow these trends include Northern Mockingbird and Lesser Goldfinch. (See more on the expansion of the Lesser Goldfinch here.) White-tailed Kite showed a marked increased in the mid-1990s before retracting, which seems to be part of a range-wide decline in the past two decades, perhaps related to other factors.

Curiously, three of the Northwest’s most common resident insectivores, Hutton’s Vireo, Bushtit, and Bewick’s Wren, already established in much of the range shown on the maps above, show little sign of northward expansion or increase within these ranges. The wren is moving up the Okanogan River, and the vireo just began making forays onto the Columbia Plateau. Both of these expansions are predicted.

Likewise, some of California’s oak-dependent species, which would otherwise meet the criteria of resident insectivores (e.g. Oak Titmouse), show little sign of expansion. Oaks are slow-growing trees, which probably limits their ability to move north quickly. Similarly, the Wrentit remains constrained by a barrier it cannot cross—the Columbia River.

Call it the invasion of the Northwest. Call it Californication. Call it climate change or global warming. Regardless, the birds of California are moving north, as predicted and, in some cases, more dramatically than predicted.

ANHU CBC graph.jpg

Two of the nation’s top birding spots threatened by the wall

Of the top 20 birding sites in the entire United States, based on the number of species reported on eBird, six of them are in south Texas. Two of them, Bentsen-Rio Grande Valley State Park and Santa Ana National Wildlife Refuge, are threatened by Trump’s proposed wall.


RG border map

The map above, taken from an excellent article illustrating all of the natural resources at risk from California to Texas, includes the bird totals for the eBird hotspots associated with the at-risk parks and wildlife refuges. The wall is often constructed hundreds of yards north of the actual border (the Rio Grande River). It typically includes a swath of cleared land on each side of it.  At Bentsen and Santa Ana, the wall threatens to destroy critical remaining habitat and strand the parks in “no-man’s land”, preventing public access. Dozens of articles have been written regarding the impacts to everything from butterflies to ocelots.

Sabal Palm is unique, in that the natural area is south of the wall. Visitors pass thru the wall in order to visit the park. However, there is no guarantee this arrangement will be made at other sites. Should public access be denied at Bentsen, the park could revert back to the Bentsen family per a historical agreement. The national wildlife refuges are especially at risk. As they are already federal properties, the Administration doesn’t have to deal with acquiring private property. Thus, they are the easiest places to build.



How to stop birds from flying into your windows

Window strikes kill hundreds of millions of birds each year. It’s a terrible feeling when you’ve set up a feeder just so you can watch the birds and it becomes a death trap, luring birds into food, only to be followed by a sharp “thunk” against your window, resulting in a stunned and sometimes dead bird.


My falcon decals look great from the inside, but they are nearly impossible to see from the outside. Since they don’t move, they don’t attract attention. They did little to stop window strikes.

Here I present one solution from my backyard. The key is something in front of the window that allows the birds to see it and realize what it is. Moving objects, like ribbons that move in the wind, work best. Still objects, like falcon decals and plastic owls, work poorly. Additionally, the maximum range of effect of a window marker is only about 18 inches. I’ve had birds hit my window within 18 inches of the falcon decoy.

Here is my solution, which is quite effective. Tack a shiny ribbon to the top middle of each window, hanging down most of the length of the window.  I had a name brand mylar ribbon designed for the purpose (probably a Father’s Day gift), but any shiny ribbon will probably work. There are other similar brands on Amazon. The key is that it moves in the slightest breeze, reflecting off and revealing the window behind it.


This 8-second video illustrates how the slightest wind moves the ribbons, making the windows apparent. Note the falcon decals are still there, just hard to see.

Finally, here’s a view from inside the house with the ribbons in place. From the inside, they are much less noticeable than the decals. From the outside, it’s a different story.


Another thing to experiment with is the placement of your feeders. I once hung a thistle feeder very near the windows. This resulted in several goldfinch deaths, as they tend to flush from the feeder in a fast direct flight. I moved the feeder back ten feet, which made a huge difference, apparently giving them time to see their options while flushing.